Search results
Results from the WOW.Com Content Network
Chromium(III) hydroxide is a gelatinous green inorganic compound with the chemical formula Cr(OH) 3. It is a polymer with an undefined structure and low solubility. It is amphoteric, dissolving in both strong alkalis and strong acids. [2] In alkali: Cr(OH) 3 + OH − → CrO − 2 + 2 H 2 O In acid: Cr(OH) 3 (OH 2) 3 + 3 H + → Cr(OH 2) 6 3+
Chromium compounds are compounds containing the element chromium (Cr). Chromium is a member of group 6 of the transition metals . The +3 and +6 states occur most commonly within chromium compounds, followed by +2; charges of +1, +4 and +5 for chromium are rare, but do nevertheless occasionally exist.
Further condensation reactions can occur in strongly acidic solution with the formation of trichromates, Cr 3 O 2− 10, and tetrachromates, Cr 4 O 2− 13. [2] All polyoxyanions of chromium(VI) have structures made up of tetrahedral CrO 4 units sharing corners. [3] The hydrogen chromate ion, HCrO 4 −, is a weak acid: HCrO − 4 ⇌ CrO 2−
There is no complete list of chemical compounds since by nature the list would be infinite. ... glucose: 50-99-7 C 6 H ... chromium(III) nitrite: Cr(OH) 3: chromium ...
Naturally occurring chromium is composed of four stable isotopes; 50 Cr, 52 Cr, 53 Cr and 54 Cr, with 52 Cr being the most abundant (83.789% natural abundance). 50 Cr is observationally stable , as it is theoretically capable of decaying to 50 Ti via double electron capture with a half-life of no less than 1.3 × 10 18 years.
Cerium(III) fluoride – CeF 3; Cerium(III) hydroxide – Ce(OH) 3; Cerium(III) iodide – CeI 3; Cerium(III) nitrate – Ce(NO 3) 3; Cerium(III) oxide – Ce 2 O 3; Cerium(III) sulfate – Ce 2 (SO 4) 3; Cerium(III) sulfide – Ce 2 S 3; Cerium(IV) hydroxide – Ce(OH) 4; Cerium(IV) nitrate – Ce(NO 3) 4; Cerium(IV) oxide – CeO 2; Cerium(IV ...
4 CrO 3 → 2 Cr 2 O 3 + 3 O 2. It is used in organic synthesis as an oxidant, often as a solution in acetic acid, [9] or acetone in the case of the Jones oxidation. In these oxidations, the Cr(VI) converts primary alcohols to the corresponding carboxylic acids and secondary alcohols to ketones. The reactions are shown below: Primary alcohols ...
4 + Cr 2 O 3. The oxide is also formed by the decomposition of chromium salts such as chromium nitrate, or by the exothermic decomposition of ammonium dichromate. (NH 4) 2 Cr 2 O 7 → Cr 2 O 3 + N 2 + 4 H 2 O. The reaction has a low ignition temperature of less than 200 °C and is frequently used in “volcano” demonstrations. [8]