enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bisection method - Wikipedia

    en.wikipedia.org/wiki/Bisection_method

    A few steps of the bisection method applied over the starting range [a 1;b 1].The bigger red dot is the root of the function. In mathematics, the bisection method is a root-finding method that applies to any continuous function for which one knows two values with opposite signs.

  3. Polynomial root-finding - Wikipedia

    en.wikipedia.org/wiki/Polynomial_root-finding

    Finding roots in a specific region of the complex plane, typically the real roots or the real roots in a given interval (for example, when roots represents a physical quantity, only the real positive ones are interesting). For finding one root, Newton's method and other general iterative methods work generally well.

  4. Real-root isolation - Wikipedia

    en.wikipedia.org/wiki/Real-root_isolation

    The bisection method consists roughly of starting from an interval containing all real roots of a polynomial, and divides it recursively into two parts until getting eventually intervals that contain either zero or one root. The starting interval may be of the form (-B, B), where B is an upper bound on the absolute values of the roots, such as ...

  5. Root-finding algorithm - Wikipedia

    en.wikipedia.org/wiki/Root-finding_algorithm

    In numerical analysis, a root-finding algorithm is an algorithm for finding zeros, also called "roots", of continuous functions. A zero of a function f is a number x such that f ( x ) = 0 . As, generally, the zeros of a function cannot be computed exactly nor expressed in closed form , root-finding algorithms provide approximations to zeros.

  6. Budan's theorem - Wikipedia

    en.wikipedia.org/wiki/Budan's_theorem

    In mathematics, Budan's theorem is a theorem for bounding the number of real roots of a polynomial in an interval, and computing the parity of this number. It was published in 1807 by François Budan de Boislaurent. A similar theorem was published independently by Joseph Fourier in 1820. Each of these theorems is a corollary of the other.

  7. Sturm's theorem - Wikipedia

    en.wikipedia.org/wiki/Sturm's_theorem

    For defining this starting interval, one may use bounds on the size of the roots (see Properties of polynomial roots § Bounds on (complex) polynomial roots). Then, one divides this interval in two, by choosing c in the middle of ( a , b ] . {\displaystyle (a,b].}

  8. Vincent's theorem - Wikipedia

    en.wikipedia.org/wiki/Vincent's_theorem

    The Vincent–Alesina–Galuzzi (VAG) method is the simplest of all methods derived from Vincent's theorem but has the most time consuming test (in line 1) to determine if a polynomial has roots in the interval of interest; this makes it the slowest of the methods presented in this article.

  9. Descartes' rule of signs - Wikipedia

    en.wikipedia.org/wiki/Descartes'_rule_of_signs

    The rule states that if the nonzero terms of a single-variable polynomial with real coefficients are ordered by descending variable exponent, then the number of positive roots of the polynomial is either equal to the number of sign changes between consecutive (nonzero) coefficients, or is less than it by an even number.