Search results
Results from the WOW.Com Content Network
Oscillation is the repetitive or periodic variation, typically in time, of some measure about a central value (often a point of equilibrium) or between two or more different states. Familiar examples of oscillation include a swinging pendulum and alternating current. Oscillations can be used in physics to approximate complex interactions, such ...
In chemistry, pyramidal inversion (also umbrella inversion) is a fluxional process in compounds with a pyramidal molecule, such as ammonia (NH 3) "turns inside out". [1] [2] It is a rapid oscillation of the atom and substituents, the molecule or ion passing through a planar transition state. [3]
The PMNS matrix is most commonly parameterized by three mixing angles ( , , and ) and a single phase angle called related to charge–parity violations (i.e. differences in the rates of oscillation between two states with opposite starting points, which makes the order in time in which events take place necessary to predict ...
A well known example of a two-state system is the spin of a spin-1/2 particle such as an electron, whose spin can have values +ħ/2 or −ħ/2, where ħ is the reduced Planck constant. The two-state system cannot be used as a description of absorption or decay, because such processes require coupling to a continuum.
A multivibrator is an electronic circuit used to implement a variety of simple two-state [1] [2] [3] devices such as relaxation oscillators, timers, latches and flip-flops. The first multivibrator circuit, the astable multivibrator oscillator, was invented by Henri Abraham and Eugene Bloch during World War I. It consisted of two vacuum tube ...
But in those hypothetical extensions of the Standard Model which include interactions that do not strictly conserve baryon number, neutron–antineutron oscillations are predicted to occur. [2] [3] [4] Such oscillations can be classified into two types: Particle–antiparticle oscillation (for example, K 0 ⇄ K 0 oscillation, B 0 ⇄ B 0 ...
In a quantum oscillation experiment, the external magnetic field is varied, which causes the Landau levels to pass over the Fermi surface, which in turn results in oscillations of the electronic density of states at the Fermi level; this produces oscillations in the many material properties which depend on this, including resistance (the ...
In a dynamical system, bistability means the system has two stable equilibrium states. [1] A bistable structure can be resting in either of two states. An example of a mechanical device which is bistable is a light switch. The switch lever is designed to rest in the "on" or "off" position, but not between the two.