Search results
Results from the WOW.Com Content Network
The Dakin oxidation (or Dakin reaction) is an organic redox reaction in which an ortho- or para-hydroxylated phenyl aldehyde (2-hydroxybenzaldehyde or 4-hydroxybenzaldehyde) or ketone reacts with hydrogen peroxide (H 2 O 2) in base to form a benzenediol and a carboxylate. Overall, the carbonyl group is oxidised, whereas the H 2 O 2 is reduced.
Tollens' reagent (chemical formula ()) is a chemical reagent used to distinguish between aldehydes and ketones along with some alpha-hydroxy ketones which can tautomerize into aldehydes. The reagent consists of a solution of silver nitrate , ammonium hydroxide and some sodium hydroxide (to maintain a basic pH of the reagent solution).
The further reaction of the Schiff reagent with aldehydes is complex with several research groups reporting multiple reaction products with model compounds. In the currently accepted mechanism, the pararosaniline and bisulfite combine to yield the "decolorized" adduct with sulfonation at the central carbon as described and shown.
Benzaldehyde (C 6 H 5 CHO) is an organic compound consisting of a benzene ring with a formyl substituent. It is among the simplest aromatic aldehydes and one of the most industrially useful. It is a colorless liquid with a characteristic almond -like odor , and is commonly used in cherry -flavored sodas . [ 5 ]
Mechanism of the benzoin addition. In this reaction, one aldehyde donates a proton and one aldehyde accepts a proton. Some aldehydes can only donate protons, such as 4-dimethylaminobenzaldehyde, whereas benzaldehyde is both a proton acceptor and donor. In this way it is possible to synthesise mixed benzoins, i.e. products with different groups ...
In organic chemistry, Fehling's solution is a chemical reagent used to differentiate between water-soluble carbohydrate and ketone (>C=O) functional groups, and as a test for reducing sugars and non-reducing sugars, supplementary to the Tollens' reagent test. The test was developed by German chemist Hermann von Fehling in 1849. [1]
The Étard reaction is a chemical reaction that involves the direct oxidation of an aromatic or heterocyclic bound methyl group to an aldehyde using chromyl chloride. [1] [2] [3] For example, toluene can be oxidized to benzaldehyde. It is named for the French chemist Alexandre Léon Étard (5 January 1852, Alençon – 1 May 1910).
A possible mechanism is depicted below: [5] proposed mechanism Pomeranz-Fritsch reaction. First the benzalaminoacetal 1 is built by the condensation of benzaldehyde and a 2,2-dialkoxyethylamine. After the condensation a hydrogen-atom is added to one of the alkoxy groups. Subsequently, an alcohol is removed.