Search results
Results from the WOW.Com Content Network
Building insulation: Understanding thermal resistance helps in designing energy-efficient buildings with effective insulation materials to reduce heat transfer. Electronics cooling: Thermal resistance is crucial for designing heat sinks and thermal management systems in electronic devices to prevent overheating. Calculating thermal conductance ...
The defining equation for thermal conductivity is =, where is the heat flux, is the thermal conductivity, and is the temperature gradient. This is known as Fourier's law for heat conduction. Although commonly expressed as a scalar , the most general form of thermal conductivity is a second-rank tensor .
The heat sink thermal resistance model consists of two resistances, namely the resistance in the heat sink base, , and the resistance in the fins, . The heat sink base thermal resistance, , can be written as follows if the source is a uniformly applied the heat sink base. If it is not, then the base resistance is primarily spreading resistance:
If the thermal resistance at the fluid/sphere interface exceeds that thermal resistance offered by the interior of the metal sphere, the Biot number will be less than one. For systems where it is much less than one, the interior of the sphere may be presumed always to have the same temperature, although this temperature may be changing, as heat ...
This is the ratio of the fin heat transfer rate to the heat transfer rate of the fin if the entire fin were at the base temperature, = ˙. in this equation is equal to the surface area of the fin. The fin efficiency will always be less than one, as assuming the temperature throughout the fin is at the base temperature would increase the heat ...
Defining equation SI unit Dimension Temperature gradient: No standard symbol K⋅m −1: ΘL −1: Thermal conduction rate, thermal current, thermal/heat flux, thermal power transfer P = / W ML 2 T −3: Thermal intensity I = / W⋅m −2
The fouling resistances can be calculated for a specific heat exchanger if the average thickness and thermal conductivity of the fouling are known. The product of the average thickness and thermal conductivity will result in the fouling resistance on a specific side of the heat exchanger. [17]
If the thermal resistance of the fluid/sphere interface exceeds that thermal resistance offered by the interior of the metal sphere, the Biot number will be less than one. For systems where it is much less than one, the interior of the sphere may be presumed to be a uniform temperature, although this temperature may be changing with time as ...