enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. B-tree - Wikipedia

    en.wikipedia.org/wiki/B-tree

    In computer science, a B-tree is a self-balancing tree data structure that maintains sorted data and allows searches, sequential access, insertions, and deletions in logarithmic time. The B-tree generalizes the binary search tree , allowing for nodes with more than two children. [ 2 ]

  3. 2–3–4 tree - Wikipedia

    en.wikipedia.org/wiki/2–3–4_tree

    2–3–4 trees are B-trees of order 4; [1] like B-trees in general, they can search, insert and delete in O(log n) time.One property of a 2–3–4 tree is that all external nodes are at the same depth.

  4. Binary search tree - Wikipedia

    en.wikipedia.org/wiki/Binary_search_tree

    Fig. 1: A binary search tree of size 9 and depth 3, with 8 at the root. In computer science, a binary search tree (BST), also called an ordered or sorted binary tree, is a rooted binary tree data structure with the key of each internal node being greater than all the keys in the respective node's left subtree and less than the ones in its right subtree.

  5. 2–3 tree - Wikipedia

    en.wikipedia.org/wiki/2–3_tree

    Insertion maintains the balanced property of the tree. [5] To insert into a 2-node, the new key is added to the 2-node in the appropriate order. To insert into a 3-node, more work may be required depending on the location of the 3-node. If the tree consists only of a 3-node, the node is split into three 2-nodes with the appropriate keys and ...

  6. B+ tree - Wikipedia

    en.wikipedia.org/wiki/B+_tree

    A B+ tree can be viewed as a B-tree in which each node contains only keys (not key–value pairs), and to which an additional level is added at the bottom with linked leaves. The primary value of a B+ tree is in storing data for efficient retrieval in a block-oriented storage context — in particular, filesystems .

  7. Self-balancing binary search tree - Wikipedia

    en.wikipedia.org/wiki/Self-balancing_binary...

    Self-balancing binary trees solve this problem by performing transformations on the tree (such as tree rotations) at key insertion times, in order to keep the height proportional to log 2 (n). Although a certain overhead is involved, it is not bigger than the always necessary lookup cost and may be justified by ensuring fast execution of all ...

  8. Binary tree - Wikipedia

    en.wikipedia.org/wiki/Binary_tree

    The process of inserting a node into a binary tree. Insertion on internal nodes is slightly more complex than on leaf nodes. Say that the internal node is node A and that node B is the child of A. (If the insertion is to insert a right child, then B is the right child of A, and similarly with a left child insertion.)

  9. Treap - Wikipedia

    en.wikipedia.org/wiki/Treap

    After any sequence of insertions and deletions of keys, the shape of the tree is a random variable with the same probability distribution as a random binary tree; in particular, with high probability its height is proportional to the logarithm of the number of keys, so that each search, insertion, or deletion operation takes logarithmic time to ...