Search results
Results from the WOW.Com Content Network
C A is the analytical concentration of the acid and C H is the concentration the hydrogen ion that has been added to the solution. The self-dissociation of water is ignored. A quantity in square brackets, [X], represents the concentration of the chemical substance X. It is understood that the symbol H + stands for the hydrated hydronium ion.
The Charlot equation, named after Gaston Charlot, is used in analytical chemistry to relate the hydrogen ion concentration, and therefore the pH, with the formal analytical concentration of an acid and its conjugate base. It can be used for computing the pH of buffer solutions when the approximations of the Henderson–Hasselbalch equation ...
The pH of a solution is defined as the negative logarithm of the concentration of H+, and the pOH is defined as the negative logarithm of the concentration of OH-. For example, the pH of a 0.01M solution of hydrochloric acid (HCl) is equal to 2 (pH = −log 10 (0.01)), while the pOH of a 0.01M solution of sodium hydroxide (NaOH) is equal to 2 ...
An ICE table or RICE box or RICE chart is a tabular system of keeping track of changing concentrations in an equilibrium reaction. ICE stands for initial, change, equilibrium . It is used in chemistry to keep track of the changes in amount of substance of the reactants and also organize a set of conditions that one wants to solve with. [ 1 ]
The main advantage of the molal concentration unit (mol/kg water) is to result in stable and robust concentration values which are independent of the solution density and volume changes (density depending on the water salinity (ionic strength), temperature and pressure); therefore, molality is the preferred unit used in thermodynamic ...
Pourbaix diagram of iron. [1] The Y axis corresponds to voltage potential. In electrochemistry, and more generally in solution chemistry, a Pourbaix diagram, also known as a potential/pH diagram, E H –pH diagram or a pE/pH diagram, is a plot of possible thermodynamically stable phases (i.e., at chemical equilibrium) of an aqueous electrochemical system.
They can be used to calculate mixed ion activity coefficients and water activities in solutions of high ionic strength for which the Debye–Hückel theory is no longer adequate. They are more rigorous than the equations of specific ion interaction theory (SIT theory), but Pitzer parameters are more difficult to determine experimentally than ...
The molar concentration of hydronium or H + ions determines a solution's pH according to pH = -log([H 3 O +]/M) where M = mol/L. The concentration of hydroxide ions analogously determines a solution's pOH. The molecules in pure water auto-dissociate into aqueous protons and hydroxide ions in the following equilibrium: H 2 O ⇌ OH − (aq) + H ...