enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cross-validation (statistics) - Wikipedia

    en.wikipedia.org/wiki/Cross-validation_(statistics)

    Cross-validation includes resampling and sample splitting methods that use different portions of the data to test and train a model on different iterations. It is often used in settings where the goal is prediction, and one wants to estimate how accurately a predictive model will perform in practice.

  3. Statistical model validation - Wikipedia

    en.wikipedia.org/wiki/Statistical_model_validation

    Cross validation is a method of model validation that iteratively refits the model, each time leaving out just a small sample and comparing whether the samples left out are predicted by the model: there are many kinds of cross validation. Predictive simulation is used to compare simulated data to actual data.

  4. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]

  5. Principal component regression - Wikipedia

    en.wikipedia.org/wiki/Principal_component_regression

    The eigenvectors to be used for regression are usually selected using cross-validation. The estimated regression coefficients (having the same dimension as the number of selected eigenvectors) along with the corresponding selected eigenvectors are then used for predicting the outcome for a future observation.

  6. Repeated measures design - Wikipedia

    en.wikipedia.org/wiki/Repeated_measures_design

    Repeated measures design is a research design that involves multiple measures of the same variable taken on the same or matched subjects either under different conditions or over two or more time periods. [1] For instance, repeated measurements are collected in a longitudinal study in which change over time is assessed.

  7. Regression validation - Wikipedia

    en.wikipedia.org/wiki/Regression_validation

    If, for example, the out-of-sample mean squared error, also known as the mean squared prediction error, is substantially higher than the in-sample mean square error, this is a sign of deficiency in the model. A development in medical statistics is the use of out-of-sample cross validation techniques in meta-analysis.

  8. Jackknife resampling - Wikipedia

    en.wikipedia.org/wiki/Jackknife_resampling

    In statistics, the jackknife (jackknife cross-validation) is a cross-validation technique and, therefore, a form of resampling. It is especially useful for bias and variance estimation. The jackknife pre-dates other common resampling methods such as the bootstrap .

  9. Cross-validation (analytical chemistry) - Wikipedia

    en.wikipedia.org/wiki/Cross-validation...

    In analytical chemistry, cross-validation is an approach by which the sets of scientific data generated using two or more methods are critically assessed. [1] The cross-validation can be categorized as either method validation [ 1 ] or analytical data validation.