Search results
Results from the WOW.Com Content Network
Moghadasi et alios [10] evaluated Corey, Chierici and LET correlations for oil/water relative permeability using a sophisticated method that takes into account the number of uncertain model parameters. They found that LET, with the largest number (three) of uncertain parameters, was clearly the best one for both oil and water relative permeability.
A practical unit for permeability is the darcy (d), or more commonly the millidarcy (md) (1 d ≈ 10 −12 m 2). The name honors the French Engineer Henry Darcy who first described the flow of water through sand filters for potable water supply. Permeability values for most materials commonly range typically from a fraction to several thousand ...
In fluid dynamics, the Buckley–Leverett equation is a conservation equation used to model two-phase flow in porous media. [1] The Buckley–Leverett equation or the Buckley–Leverett displacement describes an immiscible displacement process, such as the displacement of oil by water, in a one-dimensional or quasi-one-dimensional reservoir.
The above-mentioned case reflected downdip water injection (or updip gas injection) or production by pressure depletion. If you inject water updip (or gas downdip) for a period of time, it will give rise to different relative permeability curves in the x+ and x- directions.
In petroleum engineering, the Leverett J-function is a dimensionless function of water saturation describing the capillary pressure, [1] = / where is the water saturation measured as a fraction, is the capillary pressure (in pascal), is the permeability (measured in m²), is the porosity (0-1), is the surface tension (in N/m) and is the contact angle.
A number of papers have utilized Darcy's law to model the physics of brewing in a moka pot, specifically how the hot water percolates through the coffee grinds under pressure, starting with a 2001 paper by Varlamov and Balestrino, [6] and continuing with a 2007 paper by Gianino, [7] a 2008 paper by Navarini et al., [8] and a 2008 paper by W ...
In physics and engineering, permeation (also called imbuing) is the penetration of a permeate (a fluid such as a liquid, gas, or vapor) through a solid.It is directly related to the concentration gradient of the permeate, a material's intrinsic permeability, and the materials' mass diffusivity. [1]
This number should not be confused with the Darcy friction factor which applies to pressure drop in a pipe. It is defined as = where K is the permeability of the medium (SI units: m 2); d is the characteristic length, e.g. the diameter of the particle (SI units: m). [1]