Search results
Results from the WOW.Com Content Network
In thermodynamics, heat engines are often modeled using a standard engineering model such as the Otto cycle. The theoretical model can be refined and augmented with actual data from an operating engine, using tools such as an indicator diagram. Since very few actual implementations of heat engines exactly match their underlying thermodynamic ...
The reversible heat engine efficiency can be determined by analyzing a Carnot heat engine as one of reversible heat engine. This conclusion is an important result because it helps establish the Clausius theorem , which implies that the change in entropy S {\displaystyle S} is unique for all reversible processes: [ 4 ]
A Carnot heat engine [2] is a theoretical heat engine that operates on the Carnot cycle. The basic model for this engine was developed by Nicolas Léonard Sadi Carnot in 1824. The Carnot engine model was graphically expanded by Benoît Paul Émile Clapeyron in 1834 and mathematically explored by Rudolf Clausius in 1857, work that led to the ...
For a heat engine, thermal efficiency is the ratio of the net work output to the heat input; in the case of a heat pump, thermal efficiency (known as the coefficient of performance or COP) is the ratio of net heat output (for heating), or the net heat removed (for cooling) to the energy input (external work). The efficiency of a heat engine is ...
A Carnot cycle is an ideal thermodynamic cycle proposed by French physicist Sadi Carnot in 1824 and expanded upon by others in the 1830s and 1840s. By Carnot's theorem, it provides an upper limit on the efficiency of any classical thermodynamic engine during the conversion of heat into work, or conversely, the efficiency of a refrigeration system in creating a temperature difference through ...
Thermodynamic power cycles are the basis for the operation of heat engines, ... 1997. Chapter 21, Entropy and the Second Law of Thermodynamics. Çengel, Yunus A., and ...
The initial application of thermodynamics to mechanical heat engines was quickly extended to the study of chemical compounds and chemical reactions. Chemical thermodynamics studies the nature of the role of entropy in the process of chemical reactions and has provided the bulk of expansion and knowledge of the field. Other formulations of ...
This is a consequence of the first law of thermodynamics, as for the total system's energy to remain the same; + = (+) =, so therefore = (), where (1) the sign convention of heat is used in which heat entering into (leaving from) an engine is positive (negative) and (2) is obtained by the definition of efficiency of the engine when the engine ...