Search results
Results from the WOW.Com Content Network
The polyol metabolic pathway. [6]Cells use glucose for energy.This normally occurs by phosphorylation from the enzyme hexokinase. However, if large amounts of glucose are present (as in diabetes mellitus), hexokinase becomes saturated and the excess glucose enters the polyol pathway when aldose reductase reduces it to sorbitol.
Glucose-6-phosphate can then progress through glycolysis. [1] Glycolysis only requires the input of one molecule of ATP when the glucose originates in glycogen. [1] Alternatively, glucose-6-phosphate can be converted back into glucose in the liver and the kidneys, allowing it to raise blood glucose levels if necessary. [2]
Fructose 1,6-bisphosphate aldolase is another temperature dependent enzyme that plays an important role in the regulation of glycolysis and gluconeogenesis during hibernation. [14] Its main role is in glycolysis instead of gluconeogenesis, but its substrate is the same as FBPase's, so its activity affects that of FBPase in gluconeogenesis.
A metabolic network is the complete set of metabolic and physical processes that determine the physiological and biochemical properties of a cell.As such, these networks comprise the chemical reactions of metabolism, the metabolic pathways, as well as the regulatory interactions that guide these reactions.
This amplifies the effect of activating glycogen phosphorylase. This inhibition is achieved by a similar mechanism, as protein kinase A acts to phosphorylate the enzyme, which lowers activity. This is known as co-ordinate reciprocal control. Refer to glycolysis for further information of the regulation of glycogenesis.
This synthesis can be divided into two main phases: The first phase is the synthesis of the trioses, dihydroxyacetone (DHAP) and glyceraldehyde; the second phase is the subsequent metabolism of these trioses either in the gluconeogenic pathway for glycogen replenishment and/or the complete metabolism in the fructolytic pathway to pyruvate ...
Fru-2,6-P 2 contributes to the rate-determining step of glycolysis as it activates enzyme phosphofructokinase 1 in the glycolysis pathway, and inhibits fructose-1,6-bisphosphatase 1 in gluconeogenesis. [1] Since Fru-2,6-P 2 differentially regulates glycolysis and gluconeogenesis, it can act as a key signal to switch between the opposing ...
Finally, the cell will increase the rate of glycolysis within itself to break glucose in the cell into other components for tissue growth purposes. An example of positive feedback mechanism in the insulin transduction pathway is the activation of some enzymes that inhibit other enzymes from slowing or stopping the insulin transduction pathway ...