Search results
Results from the WOW.Com Content Network
Active negative differential resistance devices (fig. 4): Circuits can be designed in which a positive voltage applied to the terminals will cause a proportional "negative" current; a current out of the positive terminal, the opposite of an ordinary resistor, over a limited range, [2] [26] [44] [45] [46] Unlike in the above devices, the ...
Faraday's law is a single equation describing two different phenomena: the motional emf generated by a magnetic force on a moving wire (see the Lorentz force), and the transformer emf generated by an electric force due to a changing magnetic field (described by the Maxwell–Faraday equation).
The induced B-field increases the flux on this side of the circuit, opposing the decrease in flux due to r the rotation. The energy required to keep the disc moving, despite this reactive force, is exactly equal to the electrical energy generated (plus energy wasted due to friction, Joule heating, and other inefficiencies
For a circuit using a battery source, the emf is due solely to the chemical forces in the battery. For a circuit using an electric generator, the emf is due solely to a time-varying magnetic forces within the generator. Both a 1 volt emf and a 1 volt potential difference correspond to 1 joule per coulomb of charge.
The critical field resistance is the maximum field circuit resistance for a given speed with which the shunt generator would excite. The shunt generator will build up voltage only if field circuit resistance is less than critical field resistance. It is a tangent to the open circuit characteristics of the generator at a given speed.
The negative-energy particle then crosses the event horizon into the black hole, with the law of conservation of energy requiring that an equal amount of positive energy should escape. In the Penrose process , a body divides in two, with one half gaining negative energy and falling in, while the other half gains an equal amount of positive ...
Thus, the magnetic force on each electron in the y-axis direction is cancelled by a y-axis electrical force due to the buildup of charges. The v x term is the drift velocity of the current which is assumed at this point to be holes by convention. The v x B z term is negative in the y-axis direction by the right hand rule.
A generator in electrical circuit theory is one of two ideal elements: an ideal voltage source, or an ideal current source. [1] These are two of the fundamental elements in circuit theory. Real electrical generators are most commonly modelled as a non-ideal source consisting of a combination of an ideal source and a resistor.