enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Convolutional layer - Wikipedia

    en.wikipedia.org/wiki/Convolutional_layer

    In artificial neural networks, a convolutional layer is a type of network layer that applies a convolution operation to the input. Convolutional layers are some of the primary building blocks of convolutional neural networks (CNNs), a class of neural network most commonly applied to images, video, audio, and other data that have the property of uniform translational symmetry.

  3. Convolutional neural network - Wikipedia

    en.wikipedia.org/wiki/Convolutional_neural_network

    A convolutional neural network (CNN) is a regularized type of feedforward neural network that learns features by itself via filter (or kernel) optimization. This type of deep learning network has been applied to process and make predictions from many different types of data including text, images and audio. [1]

  4. Convolution - Wikipedia

    en.wikipedia.org/wiki/Convolution

    Gaussian blur can be used to obtain a smooth grayscale digital image of a halftone print. Convolution and related operations are found in many applications in science, engineering and mathematics. Convolutional neural networks apply multiple cascaded convolution kernels with applications in machine vision and artificial intelligence.

  5. U-Net - Wikipedia

    en.wikipedia.org/wiki/U-Net

    U-Net was created by Olaf Ronneberger, Philipp Fischer, Thomas Brox in 2015 and reported in the paper "U-Net: Convolutional Networks for Biomedical Image Segmentation". [1] It is an improvement and development of FCN: Evan Shelhamer, Jonathan Long, Trevor Darrell (2014).

  6. LeNet - Wikipedia

    en.wikipedia.org/wiki/LeNet

    1994 LeNet was a larger version of 1989 LeNet designed to fit the larger MNIST database. It had more feature maps in its convolutional layers, and had an additional layer of hidden units, fully connected to both the last convolutional layer and to the output units. It has 2 convolutions, 2 average poolings, and 2 fully connected layers.

  7. Contrastive Language-Image Pre-training - Wikipedia

    en.wikipedia.org/wiki/Contrastive_Language-Image...

    There is an average pooling of stride 2 at the start of each downsampling convolutional layer (they called it rect-2 blur pooling according to the terminology of [21]). This has the effect of blurring images before downsampling, for antialiasing. [22] The final convolutional layer is followed by a multiheaded attention pooling.

  8. Kernel (image processing) - Wikipedia

    en.wikipedia.org/wiki/Kernel_(image_processing)

    In image processing, a kernel, convolution matrix, or mask is a small matrix used for blurring, sharpening, embossing, edge detection, and more.This is accomplished by doing a convolution between the kernel and an image.

  9. Layer (deep learning) - Wikipedia

    en.wikipedia.org/wiki/Layer_(Deep_Learning)

    The Convolutional layer [4] is typically used for image analysis tasks. In this layer, the network detects edges, textures, and patterns. The outputs from this layer are then fed into a fully-connected layer for further processing. See also: CNN model. The Pooling layer [5] is used to reduce the size of data input. The Recurrent layer is used ...