Search results
Results from the WOW.Com Content Network
Neutron diffraction is used for structure determination, although it has been difficult to obtain intense, monochromatic beams of neutrons in sufficient quantities. Traditionally, nuclear reactors have been used, although sources producing neutrons by spallation are becoming increasingly available. Being uncharged, neutrons scatter more from ...
Crystals used in X-ray crystallography may be smaller than a millimeter across. Although crystallography can be used to characterize the disorder in an impure or irregular crystal, crystallography generally requires a pure crystal of high regularity to solve the structure of a complicated arrangement of atoms.
The table below, listing techniques, is adapted from. [2] Inelastically scattered X-rays have intermediate phases and so in principle are not useful for X-ray crystallography . In practice X-rays with small energy transfers are included with the diffraction spots due to elastic scattering, and X-rays with large energy transfers contribute to ...
In physics, the phase problem is the problem of loss of information concerning the phase that can occur when making a physical measurement. The name comes from the field of X-ray crystallography, where the phase problem has to be solved for the determination of a structure from diffraction data. [1]
An example of a spectrometer developed by William Henry Bragg, which was used by both father and son to investigate the structure of crystals, can be seen at the Science Museum, London. [3] Jointly they measured the X-ray wavelengths of many elements to high precision, using high-energy electrons as excitation source.
To determine the crystallographic orientation of the grains in the considered sample, the following software packages are in use: Fable [8] and GrainSpotter. [9] Reconstructing the 3D shape of the grains is nontrivial and three approaches are available to do so, respectively based on simple back-projection, forward projection, algebraic ...
Small-angle X-ray scattering (SAXS) is a small-angle scattering technique by which nanoscale density differences in a sample can be quantified. This means that it can determine nanoparticle size distributions, resolve the size and shape of (monodisperse) macromolecules, determine pore sizes and characteristic distances of partially ordered materials. [1]
Anode X-ray sources have been successfully used to study gold (=) for example. [4] When doing X-ray measurements of a surface, the sample is held in Ultra-High Vacuum and the X-rays pass into and out of the UHV chamber through Beryllium windows. There are 2 approaches to chamber and diffractometer design that are in use.