enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hexadecagon - Wikipedia

    en.wikipedia.org/wiki/Hexadecagon

    The area of a regular hexadecagon with edge length t is ... A006245 enumerates the number of solutions as 1232944, ... 6 11: 1 61: 8-8 duopyramid: 8-8 duoprism:

  3. Method of exhaustion - Wikipedia

    en.wikipedia.org/wiki/Method_of_exhaustion

    This amounts to finding an area of a region by first comparing it to the area of a second region, which can be "exhausted" so that its area becomes arbitrarily close to the true area. The proof involves assuming that the true area is greater than the second area, proving that assertion false, assuming it is less than the second area, then ...

  4. Lists of uniform tilings on the sphere, plane, and hyperbolic ...

    en.wikipedia.org/wiki/Lists_of_uniform_tilings...

    Special cases are right triangles (p q 2). Uniform solutions are constructed by a single generator point with 7 positions within the fundamental triangle, the 3 corners, along the 3 edges, and the triangle interior. All vertices exist at the generator, or a reflected copy of it. Edges exist between a generator point and its image across a mirror.

  5. Packing problems - Wikipedia

    en.wikipedia.org/wiki/Packing_problems

    Packing squares in a square: Optimal solutions have been proven for n from 1-10, 14-16, 22-25, 33-36, 62-64, 79-81, 98-100, and any square integer. The wasted space is asymptotically O(a 3/5). Packing squares in a circle: Good solutions are known for n ≤ 35. The optimal packing of 10 squares in a square

  6. Geodesic polyhedron - Wikipedia

    en.wikipedia.org/wiki/Geodesic_polyhedron

    Class II (b=c): {3,q+} b,b are easier to see from the dual polyhedron {q,3} with q-gonal faces first divided into triangles with a central point, and then all edges are divided into b sub-edges. Class III : {3, q +} b , c have nonzero unequal values for b , c , and exist in chiral pairs.

  7. Apothem - Wikipedia

    en.wikipedia.org/wiki/Apothem

    Apothem of a hexagon Graphs of side, s; apothem, a; and area, A of regular polygons of n sides and circumradius 1, with the base, b of a rectangle with the same area. The green line shows the case n = 6. The apothem (sometimes abbreviated as apo [1]) of a regular polygon is a line segment from the center to the midpoint of one of its sides.

  8. Hendecagon - Wikipedia

    en.wikipedia.org/wiki/Hendecagon

    The regular hendecagon has Dih 11 symmetry, order 22. Since 11 is a prime number there is one subgroup with dihedral symmetry: Dih 1, and 2 cyclic group symmetries: Z 11, and Z 1. These 4 symmetries can be seen in 4 distinct symmetries on the hendecagon. John Conway labels these by a letter and group order. [11]

  9. Pentagonal tiling - Wikipedia

    en.wikipedia.org/wiki/Pentagonal_tiling

    For example, a regular hexagon bisects into two type 1 pentagons. Subdivision of convex hexagons is also possible with three (type 3), four (type 4) and nine (type 3) pentagons. By extension of this relation, a plane can be tessellated by a single pentagonal prototile shape in ways that generate hexagonal overlays. For example: