enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Two-body problem in general relativity - Wikipedia

    en.wikipedia.org/wiki/Two-body_problem_in...

    This is a good approximation for a photon passing a star and for a planet orbiting its sun. The motion of the lighter body (called the "particle" below) can then be determined from the Schwarzschild solution; the motion is a geodesic ("shortest path between two points") in the curved space-time.

  3. List of gravitationally rounded objects of the Solar System

    en.wikipedia.org/wiki/List_of_gravitationally...

    Vesta and Pallas are nonetheless sometimes considered small terrestrial planets anyway by sources preferring a geophysical definition, because they do share similarities to the rocky planets of the inner solar system. [56] The fourth-largest asteroid, Hygiea (radius 216.5 ± 4 km), is icy.

  4. General relativity - Wikipedia

    en.wikipedia.org/wiki/General_relativity

    The generalization of this statement, namely that the laws of special relativity hold to good approximation in freely falling (and non-rotating) reference frames, is known as the Einstein equivalence principle, a crucial guiding principle for generalizing special-relativistic physics to include gravity.

  5. Clearing the neighbourhood - Wikipedia

    en.wikipedia.org/wiki/Clearing_the_neighbourhood

    The phrase refers to an orbiting body (a planet or protoplanet) "sweeping out" its orbital region over time, by gravitationally interacting with smaller bodies nearby. Over many orbital cycles, a large body will tend to cause small bodies either to accrete with it, or to be disturbed to another orbit, or to be captured either as a satellite or into a resonant orbit.

  6. Tests of general relativity - Wikipedia

    en.wikipedia.org/wiki/Tests_of_general_relativity

    This system permits a test that compares how the gravitational pull of the outer white dwarf affects the pulsar, which has strong self-gravity, and the inner white dwarf. The result shows that the accelerations of the pulsar and its nearby white-dwarf companion differ fractionally by no more than 2.6 × 10 −6 (95% confidence level ).

  7. Gravitational acceleration - Wikipedia

    en.wikipedia.org/wiki/Gravitational_acceleration

    The table below shows comparative gravitational accelerations at the surface of the Sun, the Earth's moon, each of the planets in the Solar System and their major moons, Ceres, Pluto, and Eris. For gaseous bodies, the "surface" is taken to mean visible surface: the cloud tops of the giant planets (Jupiter, Saturn, Uranus, and Neptune), and the ...

  8. Sphere of influence (astrodynamics) - Wikipedia

    en.wikipedia.org/wiki/Sphere_of_influence_(astro...

    Gravity well (or funnel) is a metaphorical concept for a gravitational field of a mass, with the field being curved in a funnel-shaped well around the mass, illustrating the resulting gravitational potential and the gravitational potential energy needed to be accounted for to escape or stay in the immediate sphere of influence of the gravity well.

  9. Introduction to general relativity - Wikipedia

    en.wikipedia.org/wiki/Introduction_to_general...

    In order to map a body's gravitational influence, it is useful to think about what physicists call probe or test particles: particles that are influenced by gravity, but are so small and light that we can neglect their own gravitational effect. In the absence of gravity and other external forces, a test particle moves along a straight line at a ...

  1. Related searches gravitational pull for each planet is considered a good thing in order to improve

    gravitationally rounded planetsgravitationally rounded objects
    gravitationally rounded solar system