Search results
Results from the WOW.Com Content Network
Mathematical inequality relating inner products and norms. The Cauchy–Schwarz inequality (also called Cauchy–Bunyakovsky–Schwarz inequality) [1][2][3][4] is an upper bound on the inner product between two vectors in an inner product space in terms of the product of the vector norms. It is considered one of the most important and widely ...
The first of these quadratic inequalities requires r to range in the region beyond the value of the positive root of the quadratic equation r 2 + r − 1 = 0, i.e. r > φ − 1 where φ is the golden ratio. The second quadratic inequality requires r to range between 0 and the positive root of the quadratic equation r 2 − r − 1 = 0, i.e. 0 ...
The absolute value of a number may be thought of as its distance from zero. In mathematics, the absolute value or modulus of a real number , denoted , is the non-negative value of without regard to its sign. Namely, if is a positive number, and if is negative (in which case negating makes positive), and . For example, the absolute value of 3 is ...
Norm (mathematics) In mathematics, a norm is a function from a real or complex vector space to the non-negative real numbers that behaves in certain ways like the distance from the origin: it commutes with scaling, obeys a form of the triangle inequality, and is zero only at the origin. In particular, the Euclidean distance in a Euclidean space ...
In mathematics, an inequality is a relation which makes a non-equal comparison between two numbers or other mathematical expressions. [1] It is used most often to compare two numbers on the number line by their size. The main types of inequality are less than (<) and greater than (>).
Cauchy product. In mathematics, more specifically in mathematical analysis, the Cauchy product is the discrete convolution of two infinite series. It is named after the French mathematician Augustin-Louis Cauchy.
The absolute difference of two real numbers and is given by , the absolute value of their difference. It describes the distance on the real line between the points corresponding to and . It is a special case of the L p distance for all and is the standard metric used for both the set of rational numbers and their completion, the set of real ...
Ostrowski's theorem. In number theory, Ostrowski's theorem, due to Alexander Ostrowski (1916), states that every non-trivial absolute value on the rational numbers is equivalent to either the usual real absolute value or a p -adic absolute value. [1]