enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Modular arithmetic - Wikipedia

    en.wikipedia.org/wiki/Modular_arithmetic

    Adding 4 hours to 9 o'clock gives 1 o'clock, since 13 is congruent to 1 modulo 12. In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, called the modulus. The modern approach to modular arithmetic was developed by Carl Friedrich Gauss in his book Disquisitiones ...

  3. Modulo - Wikipedia

    en.wikipedia.org/wiki/Modulo

    In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation.. Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor.

  4. Modular multiplicative inverse - Wikipedia

    en.wikipedia.org/wiki/Modular_multiplicative_inverse

    Modular multiplicative inverse. In mathematics, particularly in the area of arithmetic, a modular multiplicative inverse of an integer a is an integer x such that the product ax is congruent to 1 with respect to the modulus m. [1] In the standard notation of modular arithmetic this congruence is written as.

  5. Modular exponentiation - Wikipedia

    en.wikipedia.org/wiki/Modular_exponentiation

    Consider b = 5 × 10 76 and e = 17, both of which are perfectly reasonable values. In this example, b is 77 digits in length and e is 2 digits in length, but the value b e is 1,304 decimal digits in length. Such calculations are possible on modern computers, but the sheer magnitude of such numbers causes the speed of calculations to slow ...

  6. Proofs of Fermat's little theorem - Wikipedia

    en.wikipedia.org/wiki/Proofs_of_Fermat's_little...

    Simplifications. Some of the proofs of Fermat's little theorem given below depend on two simplifications. The first is that we may assume that a is in the range 0 ≤ a ≤ p − 1. This is a simple consequence of the laws of modular arithmetic; we are simply saying that we may first reduce a modulo p.

  7. Multiplicative group of integers modulo n - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_group_of...

    n. In modular arithmetic, the integers coprime (relatively prime) to n from the set of n non-negative integers form a group under multiplication modulo n, called the multiplicative group of integers modulo n. Equivalently, the elements of this group can be thought of as the congruence classes, also known as residues modulo n, that are coprime to n.

  8. Euler's criterion - Wikipedia

    en.wikipedia.org/wiki/Euler's_criterion

    We can find quadratic residues or verify them using the above formula. To test if 2 is a quadratic residue modulo 17, we calculate 2 (17 − 1)/2 = 2 8 ≡ 1 (mod 17), so it is a quadratic residue. To test if 3 is a quadratic residue modulo 17, we calculate 3 (17 − 1)/2 = 3 8 ≡ 16 ≡ −1 (mod 17), so it is not a quadratic residue.

  9. Residue number system - Wikipedia

    en.wikipedia.org/wiki/Residue_number_system

    A residue numeral system (RNS) is a numeral system representing integers by their values modulo several pairwise coprime integers called the moduli. This representation is allowed by the Chinese remainder theorem, which asserts that, if M is the product of the moduli, there is, in an interval of length M, exactly one integer having any given set of modular values.