Search results
Results from the WOW.Com Content Network
function factorial (n is a non-negative integer) if n is 0 then return 1 [by the convention that 0! = 1] else if n is in lookup-table then return lookup-table-value-for-n else let x = factorial(n – 1) times n [recursively invoke factorial with the parameter 1 less than n] store x in lookup-table in the n th slot [remember the result of n! for ...
The code above will execute at run time to determine the factorial value of the literals 0 and 4. By using template metaprogramming and template specialization to provide the ending condition for the recursion, the factorials used in the program—ignoring any factorial not used—can be calculated at compile time by this code:
Recursion (computer science) Tree created using the Logo programming language and relying heavily on recursion. Each branch can be seen as a smaller version of a tree. Recursive drawing of a SierpiĆski Triangle through turtle graphics. In computer science, recursion is a method of solving a computational problem where the solution depends on ...
The function calls itself recursively on a smaller version of the input (n - 1) and multiplies the result of the recursive call by n, until reaching the base case, analogously to the mathematical definition of factorial. Recursion in computer programming is exemplified when a function is defined in terms of simpler, often smaller versions of ...
Tail call. In computer science, a tail call is a subroutine call performed as the final action of a procedure. [1] If the target of a tail is the same subroutine, the subroutine is said to be tail recursive, which is a special case of direct recursion. Tail recursion (or tail-end recursion) is particularly useful, and is often easy to optimize ...
Continuation-passing style. In functional programming, continuation-passing style (CPS) is a style of programming in which control is passed explicitly in the form of a continuation. This is contrasted with direct style, which is the usual style of programming. Gerald Jay Sussman and Guy L. Steele, Jr. coined the phrase in AI Memo 349 (1975 ...
n ! {\displaystyle n!} In mathematics, the factorial of a non-negative integer , denoted by , is the product of all positive integers less than or equal to . The factorial of also equals the product of with the next smaller factorial: For example, The value of 0! is 1, according to the convention for an empty product.
A single-argument version () = (,) that increases both and at the same time dwarfs every primitive recursive function, including very fast-growing functions such as the exponential function, the factorial function, multi- and superfactorial functions, and even functions defined using Knuth's up-arrow notation (except when the indexed up-arrow ...