enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    Ptolemy's theorem states that the sum of the products of the lengths of opposite sides is equal to the product of the lengths of the diagonals. When those side-lengths are expressed in terms of the sin and cos values shown in the figure above, this yields the angle sum trigonometric identity for sine: sin(α + β) = sin α cos β + cos α sin β.

  3. Small-angle approximation - Wikipedia

    en.wikipedia.org/wiki/Small-angle_approximation

    There are a number of ways to demonstrate the validity of the small-angle approximations. The most direct method is to truncate the Maclaurin series for each of the trigonometric functions. Depending on the order of the approximation , cos ⁡ θ {\displaystyle \textstyle \cos \theta } is approximated as either 1 {\displaystyle 1} or as 1 − 1 ...

  4. Exact trigonometric values - Wikipedia

    en.wikipedia.org/wiki/Exact_trigonometric_values

    In contrast, by the Lindemann–Weierstrass theorem, the sine or cosine of any non-zero algebraic number is always transcendental. [4] The real part of any root of unity is a trigonometric number. By Niven's theorem, the only rational trigonometric numbers are 0, 1, −1, 1/2, and −1/2. [5]

  5. Chebyshev polynomials - Wikipedia

    en.wikipedia.org/wiki/Chebyshev_polynomials

    That cos nx is an n th-degree polynomial in cos x can be seen by observing that cos nx is the real part of one side of de Moivre's formula: ⁡ + ⁡ = (⁡ + ⁡). The real part of the other side is a polynomial in cos x and sin x , in which all powers of sin x are even and thus replaceable through the identity cos 2 x + sin 2 x = 1 .

  6. Fourier series - Wikipedia

    en.wikipedia.org/wiki/Fourier_series

    A Fourier series (/ ˈ f ʊr i eɪ,-i ər / [1]) is an expansion of a periodic function into a sum of trigonometric functions.The Fourier series is an example of a trigonometric series. [2]

  7. Direction cosine - Wikipedia

    en.wikipedia.org/wiki/Direction_cosine

    If vectors u and v have direction cosines (α u, β u, γ u) and (α v, β v, γ v) respectively, with an angle θ between them, their units vectors are ^ = + + (+ +) = + + ^ = + + (+ +) = + +. Taking the dot product of these two unit vectors yield, ^ ^ = + + = ⁡, where θ is the angle between the two unit vectors, and is also the angle between u and v.

  8. Wikipedia:Reference desk/Archives/Mathematics/April 2006 ...

    en.wikipedia.org/wiki/Wikipedia:Reference_desk/...

    Given the Euler angles α, β and γ, the quaternion representation should be (cos γ + k sin γ)(cos β + i sin β)(cos α + k sin α). I think. Anyway, the basic idea is just to take the quaternions for the fundamental rotations around the axes by the given angles and multiply those together in the proper order.

  9. Integration using Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Integration_using_Euler's...

    At this point we can either integrate directly, or we can first change the integrand to 2 cos 6x − 4 cos 4x + 2 cos 2x and continue from there. Either method gives Either method gives ∫ sin 2 ⁡ x cos ⁡ 4 x d x = − 1 24 sin ⁡ 6 x + 1 8 sin ⁡ 4 x − 1 8 sin ⁡ 2 x + C . {\displaystyle \int \sin ^{2}x\cos 4x\,dx=-{\frac {1}{24 ...