Search results
Results from the WOW.Com Content Network
Sagittarius A*, abbreviated as Sgr A* (/ ˈ s æ dʒ ˈ eɪ s t ɑːr / SADGE-AY-star [3]), is the supermassive black hole [4] [5] [6] at the Galactic Center of the Milky Way.Viewed from Earth, it is located near the border of the constellations Sagittarius and Scorpius, about 5.6° south of the ecliptic, [7] visually close to the Butterfly Cluster (M6) and Lambda Scorpii.
The supermassive black hole Sagittarius A*, imaged by the Event Horizon Telescope [8] Astronomers now have evidence that there is a supermassive black hole at the center of the galaxy. [9] Sagittarius A* (abbreviated Sgr A*) is agreed to be the most plausible candidate for the location of this supermassive black hole.
One of the most studied stars is S2, a relatively bright star that also passes close by Sgr A*. As of 2020 [update] , S4714 is the current record holder of closest approach to Sagittarius A*, at about 12.6 astronomical units (1.88 × 10 9 km), almost as close as Saturn gets to the Sun, traveling at about 8% of the speed of light.
It is also slightly eclipsed by an accretion disc around the black hole. The system usually does not produce a significant amount of x-rays, but undergoes outbursts when the x-ray luminosity increases due to accretion onto the black hole driving superluminal jets. [7] V4641 Sgr is a source of ultra-high-energy gamma rays. [8]
By: Troy Frisby/Patrick Jones, Buzz60 NASA's new pictures of Earth are reigniting conspiracy theories straight out of "Journey to the Center of the Earth."
A black hole with the mass of a car would have a diameter of about 10 −24 m and take a nanosecond to evaporate, during which time it would briefly have a luminosity of more than 200 times that of the Sun. Lower-mass black holes are expected to evaporate even faster; for example, a black hole of mass 1 TeV/c 2 would take less than 10 −88 ...
In 2018, the temporary result of the merger of two neutron stars was determined to be a hypermassive magnetar, which shortly collapsed into a black hole. [26] In April 2020, a possible link between fast radio bursts (FRBs) and magnetars was suggested, based on observations of SGR 1935+2154, a likely magnetar located in the Milky Way galaxy.
S2, also known as S0–2, is a star in the star cluster close to the supermassive black hole Sagittarius A* (Sgr A*), orbiting it with a period of 16.0518 years, a semi-major axis of about 970 au, and a pericenter distance of 17 light hours (18 Tm or 120 au) – an orbit with a period only about 30% longer than that of Jupiter around the Sun, but coming no closer than about four times the ...