Search results
Results from the WOW.Com Content Network
Mesenchyme (/ ˈ m ɛ s ə n k aɪ m ˈ m iː z ən-/ [1]) is a type of loosely organized animal embryonic connective tissue of undifferentiated cells that give rise to most tissues, such as skin, blood or bone. [2] [3] The interactions between mesenchyme and epithelium help to form nearly every organ in the developing embryo. [4]
The zone of polarizing activity (ZPA) is an area of mesenchyme that contains signals which instruct the developing limb bud to form along the anterior/posterior axis. Limb bud is undifferentiated mesenchyme enclosed by an ectoderm covering. Eventually, the limb bud develops into bones, tendons, muscles and joints.
Intermediate mesoderm or intermediate mesenchyme is a narrow section of the mesoderm (one of the three primary germ layers) located between the paraxial mesoderm and the lateral plate of the developing embryo. [1] The intermediate mesoderm develops into vital parts of the urogenital system (kidneys, gonads and respective tracts).
The mesoderm forms mesenchyme, mesothelium and coelomocytes. Mesothelium lines coeloms. Mesoderm forms the muscles in a process known as myogenesis, septa (cross-wise partitions) and mesenteries (length-wise partitions); and forms part of the gonads (the rest being the gametes). [1] [unreliable source?] Myogenesis is specifically a function of ...
The AEF potentially functions as an inhibitor to fin outgrowth since removing the AEF results in the formation of a new AER and subsequently a new AEF. In addition, repeated AF removal leads to excessive elongation of the fin mesenchyme, potentially because of prolonged exposure of AER signals to the fin mesenchyme. [16]
In the anatomy of an embryo, the splanchnopleuric mesenchyme is a structure created during embryogenesis when the lateral mesodermal germ layer splits into two layers. The inner (or splanchnic ) layer adheres to the endoderm , and with it forms the splanchnopleure ( mesoderm external to the coelom plus the endoderm ).
The mesenchyme, through FGF10 secretion, is involved in a positive feedback loop with the AER, through FGF8 secretion. FGF8 – Secreted by the AER cells. Acts upon the mesenchymal cells, to maintain their proliferative state. Also induces the mesenchymal cells to secrete FGF10, which acts through WNT3A to sustain the AER's expression of FGF8.
The limb bud remains active throughout much of limb development as it stimulates the creation and positive feedback retention of two signaling regions: the AER and its subsequent creation of the zone of polarizing activity (ZPA) with the mesenchymal cells. [5]