Search results
Results from the WOW.Com Content Network
In biochemistry, denaturation is a process in which proteins or nucleic acids lose folded structure present in their native state due to various factors, including application of some external stress or compound, such as a strong acid or base, a concentrated inorganic salt, an organic solvent (e.g., alcohol or chloroform), agitation and radiation, or heat. [3]
Soil fertility and plant production: Use of enzyme activity as indicator of soil quality [71] [72] Composting. Impacts of composting municipal solid waste on soil microbial activity [10] Soil organic matter stability: Impact of temperature and soil respiration on enzymatic activity and its effect on soil fertility [73] Climate change indicators ...
In general, organic matter contacting soil has too little nitrogen to support the biosynthetic needs of the decomposing soil microbial population. If the C:N ratio of the decomposing organic matter is above circa 30:1 then the decomposing microbes may absorb nitrogen in mineral form as, e. g., ammonium or nitrates. This mineral nitrogen is said ...
They are excreted by soil microbes such as fungi, bacteria and archaea, and play a key role in decomposing soil organic matter into humus, in the process releasing nutrients essential for the growth of plants. Some soil enzymes such as ureases may be inhibited by ingredients in fertiliser to delay release of the nutrients over an extended period.
The dry matter consists mainly of carbon, oxygen, and hydrogen. Although these three elements make up about 92% of the dry weight of the organic matter in the soil, other elements present are essential for the nutrition of plants, including nitrogen, phosphorus, potassium, sulfur, calcium, magnesium, and many micronutrients. [1]
Carbon is stored in the soil as organic matter and is respired by plants, bacteria, fungi and animals. When this respiration occurs below ground, it is considered soil respiration. Temperature, soil moisture and nitrogen all regulate the rate of this conversion from carbon in soil organic compounds to CO 2. Many methods are used to measure soil ...
The enzymes in the Calvin cycle are functionally equivalent to most enzymes used in other metabolic pathways such as gluconeogenesis and the pentose phosphate pathway, but the enzymes in the Calvin cycle are found in the chloroplast stroma instead of the cell cytosol, separating the reactions. They are activated in the light (which is why the ...
Plants that use the C 4 carbon fixation process chemically fix carbon dioxide in the cells of the mesophyll by adding it to the three-carbon molecule phosphoenolpyruvate (PEP), a reaction catalyzed by an enzyme called PEP carboxylase, creating the four-carbon organic acid oxaloacetic acid.