Search results
Results from the WOW.Com Content Network
Lime softening (also known as lime buttering, lime-soda treatment, or Clark's process) [1] is a type of water treatment used for water softening, which uses the addition of limewater (calcium hydroxide) to remove hardness (deposits of calcium and magnesium salts) by precipitation.
Limescale build-up inside a pipe reduces both liquid flow and thermal conduction from the pipe, so will reduce thermal efficiency when used as a heat exchanger.. A descaling agent or chemical descaler is a liquid chemical substance used to remove limescale from metal surfaces in contact with hot water, such as in boilers, water heaters, and kettles.
To avoid scaling in water cooled heat exchangers, water is treated by lime and or soda ash to remove the water hardness. The following chemical reactions take place in lime soda softening process which precipitates the calcium and magnesium salts as calcium carbonate and magnesium hydroxide which have very low solubility in water.
In pipes as limescale and in surface deposits of calcite as travertine or tufa the primary driver of calcite formation is the exsolution of gas. When heating hard water on the stove, these gas bubbles form on the surface of the pan prior to boiling.
Water softening is the removal of calcium, magnesium, and certain other metal cations in hard water. The resulting soft water requires less soap for the same cleaning effort, as soap is not wasted bonding with calcium ions.
Calcium hydroxide has many names including hydrated lime, caustic lime, builders' lime, slaked lime, cal, and pickling lime. Calcium hydroxide is used in many applications, including food preparation, where it has been identified as E number E526. Limewater, also called milk of lime, is the common name for a saturated solution of calcium hydroxide.
Amelioration of soil structure leading to a reduction of mineralization by means of protecting soil organic carbon. Liming is known to ameliorate soil structure, as high Ca 2+ concentrations and high ionic strength in the soil solution enhance the flocculation of clay minerals and, in turn, form more stable soil aggregates. [9]
Some effects of agricultural lime on soil are: it increases the pH of acidic soil, reducing soil acidity and increasing alkalinity [1] it provides a source of calcium for plants; it improves water penetration for acidic soils; it improves the uptake of major plant nutrients (nitrogen, phosphorus, and potassium) of plants growing on acid soils. [2]