Search results
Results from the WOW.Com Content Network
The force is proportional to the product of the two masses and inversely proportional to the square of the distance between them: [11] Diagram of two masses attracting one another = where F is the force between the masses; G is the Newtonian constant of gravitation (6.674 × 10 −11 m 3 ⋅kg −1 ⋅s −2);
A common misconception occurs between centre of mass and centre of gravity.They are defined in similar ways but are not exactly the same quantity. Centre of mass is the mathematical description of placing all the mass in the region considered to one position, centre of gravity is a real physical quantity, the point of a body where the gravitational force acts.
A set of equations describing the trajectories of objects subject to a constant gravitational force under normal Earth-bound conditions.Assuming constant acceleration g due to Earth's gravity, Newton's law of universal gravitation simplifies to F = mg, where F is the force exerted on a mass m by the Earth's gravitational field of strength g.
The first term is the familiar law of universal gravitation; the second is an additional force, analogous to the cosmological constant term in general relativity. However, the inverse-square potential is the only potential such that the net force inside the shell is also zero. [2] The force described by the Yukawa potential
In classical mechanics, a gravitational field is a physical quantity. [5] A gravitational field can be defined using Newton's law of universal gravitation.Determined in this way, the gravitational field g around a single particle of mass M is a vector field consisting at every point of a vector pointing directly towards the particle.
Arthur Stanley Mackenzie in The Laws of Gravitation (1899) reviews the work done in the 19th century. [28] Poynting is the author of the article "Gravitation" in the Encyclopædia Britannica Eleventh Edition (1911). Here, he cites a value of G = 6.66 × 10 −11 m 3 ⋅kg −1 ⋅s −2 with a relative uncertainty of 0.2%.
For two pairwise interacting point particles, the gravitational potential energy is the work that an outside agent must do in order to quasi-statically bring the masses together (which is therefore, exactly opposite the work done by the gravitational field on the masses): = = where is the displacement vector of the mass, is gravitational force acting on it and denotes scalar product.
For a spherical body of uniform density, the gravitational binding energy U is given in Newtonian gravity by the formula [2] [3] = where G is the gravitational constant, M is the mass of the sphere, and R is its radius.