Search results
Results from the WOW.Com Content Network
The computer-generated reciprocal lattice of a fictional monoclinic 3D crystal. A two-dimensional crystal and its reciprocal lattice. Reciprocal lattice is a concept associated with solids with translational symmetry which plays a major role in many areas such as X-ray and electron diffraction as well as the energies of electrons in a solid.
This is based on the fact that a reciprocal lattice vector (the vector indicating a reciprocal lattice point from the reciprocal lattice origin) is the wavevector of a plane wave in the Fourier series of a spatial function (e.g., electronic density function) which periodicity follows the original Bravais lattice, so wavefronts of the plane wave ...
By definition, the syntax (hkℓ) denotes a plane that intercepts the three points a 1 /h, a 2 /k, and a 3 /ℓ, or some multiple thereof. That is, the Miller indices are proportional to the inverses of the intercepts of the plane with the unit cell (in the basis of the lattice vectors).
In a one-dimensional lattice the number of reciprocal lattice vectors that determine the bands in an energy interval is limited to two when the energy rises. In two and three dimensional lattices the number of reciprocal lattice vectors that determine the free electron bands E n ( k ) {\displaystyle E_{n}(\mathbf {k} )} increases more rapidly ...
In the Figure the red dot is the origin for the wavevectors, the black spots are reciprocal lattice points (vectors) and shown in blue are three wavevectors. For the wavevector k 1 {\displaystyle \mathbf {k_{1}} } the corresponding reciprocal lattice point g 1 {\displaystyle \mathbf {g_{1}} } lies on the Ewald sphere, which is the condition for ...
The first Brillouin zone is the locus of points in reciprocal space that are closer to the origin of the reciprocal lattice than they are to any other reciprocal lattice points (see the derivation of the Wigner–Seitz cell). Another definition is as the set of points in k-space that can be reached from the origin without crossing any Bragg plane.
The Laue equations can be written as = = as the condition of elastic wave scattering by a crystal lattice, where is the scattering vector, , are incoming and outgoing wave vectors (to the crystal and from the crystal, by scattering), and is a crystal reciprocal lattice vector.
Alternatively, if the basis vectors of the lattice are reduced using lattice reduction only a set number of lattice points need to be used. [10] In two-dimensions only the lattice points that make up the 4 unit cells that share a vertex with the origin need to be used. In three-dimensions only the lattice points that make up the 8 unit cells ...