Search results
Results from the WOW.Com Content Network
From the ideal gas law PV = nRT we get: = where P is pressure, V is volume, n is number of moles of a given substance, and T is temperature. As pressure is defined as force per area of measurement, the gas equation can also be written as:
How much gas is present could be specified by giving the mass instead of the chemical amount of gas. Therefore, an alternative form of the ideal gas law may be useful. The chemical amount, n (in moles), is equal to total mass of the gas (m) (in kilograms) divided by the molar mass, M (in kilograms per mole): =.
In physics, the thermal equation of state is a mathematical expression of pressure P, temperature T, and, volume V.The thermal equation of state for ideal gases is the ideal gas law, expressed as PV=nRT (where R is the gas constant and n the amount of substance), while the thermal equation of state for solids is expressed as:
The laws describing the behaviour of gases under fixed pressure, volume, amount of gas, and absolute temperature conditions are called gas laws.The basic gas laws were discovered by the end of the 18th century when scientists found out that relationships between pressure, volume and temperature of a sample of gas could be obtained which would hold to approximation for all gases.
It is an intermediate mathematical model, useful as a pedagogical tool when teaching physics, chemistry, and engineering. In addition, its saturation curve has an analytic solution, which can depict the liquid metals (mercury and cesium) quantitatively, and describes most real fluids qualitatively. [ 25 ]
If one sets out to determine the specific volume of an ideal gas, such as super heated steam, using the equation ν = RT/P, where pressure is 2500 lbf/in 2, R is 0.596, temperature is 1960 °R.
All data used in this section were obtained from the NIST Chemistry WebBook. [8] It is useful to note that for N 2 the normal boiling point of the liquid is 77.4 K and the critical point is at 126.2 K and 34.0 bar. Overview of the temperature and pressure dependence of the compressibility factor for N 2
For the special case of a gas to which Boyle's law [4] applies, the product pV (p for gas pressure and V for gas volume) is a constant if the gas is kept at isothermal conditions. The value of the constant is nRT, where n is the number of moles of the present gas and R is the ideal gas constant. In other words, the ideal gas law pV = nRT ...