Search results
Results from the WOW.Com Content Network
The radii of these objects range over three orders of magnitude, from planetary-mass objects like dwarf planets and some moons to the planets and the Sun. This list does not include small Solar System bodies , but it does include a sample of possible planetary-mass objects whose shapes have yet to be determined.
Gravity anomaly – Difference between ideal and observed gravitational acceleration at a location; Gravity of Mars – Gravitational force exerted by the planet Mars; Newton's law of universal gravitation – Classical statement of gravity as force; Vertical deflection – Measure of the downward gravitational force's shift due to nearby mass
The portion of the mass that is located at radii r > r 0 exerts no net gravitational force at the radius r 0 from the center. That is, the individual gravitational forces exerted on a point at radius r 0 by the elements of the mass outside the radius r 0 cancel each other.
Solutions are also used to describe the motion of binary stars around each other, and estimate their gradual loss of energy through gravitational radiation. General relativity describes the gravitational field by curved space-time; the field equations governing this curvature are nonlinear and therefore difficult to solve in a closed form.
Trojans are bodies located within another body's gravitationally stable Lagrange points: L 4, 60° ahead in its orbit, or L 5, 60° behind in its orbit. [160] Every planet except Mercury and Saturn is known to possess at least 1 trojan. [161] [162] [163] The Jupiter trojan population is roughly equal to that of the asteroid belt. [164]
Because Io is so close to its massive host planet, the moon is subjected to a tremendous gravitational pull as it orbits Jupiter once about every 42 hours, according to the Planetary Society. This ...
The table below shows comparative gravitational accelerations at the surface of the Sun, the Earth's moon, each of the planets in the Solar System and their major moons, Ceres, Pluto, and Eris. For gaseous bodies, the "surface" is taken to mean visible surface: the cloud tops of the giant planets (Jupiter, Saturn, Uranus, and Neptune), and the ...
The gravitational field equation is [7] = = = | | =, where F is the gravitational force, m is the mass of the test particle, R is the radial vector of the test particle relative to the mass (or for Newton's second law of motion which is a time dependent function, a set of positions of test particles each occupying a particular point in space ...