Search results
Results from the WOW.Com Content Network
Earth radius (denoted as R 🜨 or R E) is the distance from the center of Earth to a point on or near its surface. Approximating the figure of Earth by an Earth spheroid (an oblate ellipsoid), the radius ranges from a maximum (equatorial radius, denoted a) of nearly 6,378 km (3,963 mi) to a minimum (polar radius, denoted b) of nearly 6,357 km (3,950 mi).
The Earth's radius is the distance from Earth's center to its surface, about 6,371 km (3,959 mi). While "radius" normally is a characteristic of perfect spheres, the Earth deviates from spherical by only a third of a percent, sufficiently close to treat it as a sphere in many contexts and justifying the term "the radius of the Earth".
It varies globally between ±110 m. A reference ellipsoid, customarily chosen to be the same size (volume) as the geoid, is described by its semi-major axis (equatorial radius) a and flattening f. The quantity f = (a−b)/a, where b is the semi-minor axis (polar radius), is a purely
As one degree is 1 / 360 of a circle, one minute of arc is 1 / 21600 of a circle – such that the polar circumference of the Earth would be exactly 21,600 miles. Gunter used Snellius's circumference to define a nautical mile as 6,080 feet, the length of one minute of arc at 48 degrees latitude.
The polar Earth's circumference is simply four times quarter meridian: = The perimeter of a meridian ellipse can also be rewritten in the form of a rectifying circle perimeter, C p = 2πM r. Therefore, the rectifying Earth radius is: = (+) / It can be evaluated as 6 367 449.146 m.
For comparison, Earth's Moon is even less elliptical, with a flattening of less than 1/825, while Jupiter is visibly oblate at about 1/15 and one of Saturn's triaxial moons, Telesto, is highly flattened, with f between 1/3 and 1/2 (meaning that the polar diameter is between 50% and 67% of the equatorial.
If the impact of Earth's equatorial bulge is not significant for a given application (e.g., interplanetary spaceflight), the Earth ellipsoid may be simplified as a spherical Earth, in which case the geocentric and geodetic latitudes are equal and the latitude-dependent geocentric radius simplifies to a global mean Earth's radius (see also ...
The Earth-centered, Earth-fixed coordinate system (acronym ECEF), also known as the geocentric coordinate system, is a cartesian spatial reference system that represents locations in the vicinity of the Earth (including its surface, interior, atmosphere, and surrounding outer space) as X, Y, and Z measurements from its center of mass.