Search results
Results from the WOW.Com Content Network
Lactic acid fermentation is a metabolic process by which glucose or other six-carbon sugars (also, disaccharides of six-carbon sugars, e.g. sucrose or lactose) are converted into cellular energy and the metabolite lactate, which is lactic acid in solution.
As a result, they rely on lactic acid fermentation to provide the majority of their energy needs. [23] Adaptations in particular in the turtle's blood composition and shell allow it to tolerate high levels of lactic acid accumulation. In the anoxic conditions where fermentation is dominant, calcium levels in the blood plasma increase. [23]
Lactic acid fermentation is relatively inefficient. The waste products lactic acid and ethanol have not been fully oxidized and still contain energy, but it requires the addition of oxygen to extract this energy. [8] Generally, lactic acid fermentation occurs only when aerobic cells are lacking oxygen.
Pyruvate is the terminal electron acceptor in lactic acid fermentation. When sufficient oxygen is not present in the muscle cells for further oxidation of pyruvate and NADH produced in glycolysis, NAD+ is regenerated from NADH by reduction of pyruvate to lactate. [4] Lactate is converted to pyruvate by the enzyme lactate dehydrogenase. [3]
Cori cycle. The Cori cycle (also known as the lactic acid cycle), named after its discoverers, Carl Ferdinand Cori and Gerty Cori, [1] is a metabolic pathway in which lactate, produced by anaerobic glycolysis in muscles, is transported to the liver and converted to glucose, which then returns to the muscles and is cyclically metabolized back to lactate.
Normal cells primarily release energy through glycolysis followed by mitochondrial citric acid cycle and oxidative phosphorylation.However, most cancer cells predominantly release energy through a high rate of glycolysis followed by lactic acid fermentation even in the presence of abundant oxygen.
In addition to Cori Cycle, the lactate shuttle hypothesis proposes complementary functions of lactate in multiple tissues. Contrary to the long-held belief that lactate is formed as a result of oxygen-limited metabolism, substantial evidence exists that suggests lactate is formed under both aerobic and anaerobic conditions, as a result of substrate supply and equilibrium dynamics.
These organisms use lactic acid fermentation or mixed acid fermentation pathways to produce an ethanol end product. [3] The ethanol generated from these pathways is absorbed in the small intestine, causing an increase in blood alcohol concentrations that produce the effects of intoxication without the consumption of alcohol .