Search results
Results from the WOW.Com Content Network
In applied mathematical analysis, "piecewise-regular" functions have been found to be consistent with many models of the human visual system, where images are perceived at a first stage as consisting of smooth regions separated by edges (as in a cartoon); [9] a cartoon-like function is a C 2 function, smooth except for the existence of ...
A function property holds piecewise for a function, if the function can be piecewise-defined in a way that the property holds for every subdomain. Examples of functions with such piecewise properties are: Piecewise constant function, also known as a step function; Piecewise linear function; Piecewise continuous function
A piecewise linear function is a function defined on a (possibly unbounded) interval of real numbers, such that there is a collection of intervals on each of which the function is an affine function. (Thus "piecewise linear" is actually defined to mean "piecewise affine".)
Piecewise linear function, a function whose domain can be decomposed into pieces on which the function is linear; Piecewise linear manifold, a topological space formed by gluing together flat spaces; Piecewise linear homeomorphism, a topological equivalence between two piecewise linear manifolds; Piecewise linear cobordism, a cohomology theory
The signum function of a real number is a piecewise function which is defined as follows: [1] := {<, =, > The law of trichotomy states that every real number must be positive, negative or zero. The signum function denotes which unique category a number falls into by mapping it to one of the values −1 , +1 or 0, which can then be used in ...
A valuation V is called piecewise-constant, if the corresponding value-density function v is a piecewise-constant function. In other words: there is a partition of the resource C into finitely many regions, C 1 ,..., C k , such that for each j in 1,..., k , the function v inside C j equals some constant U j .
In mathematics, a function on the real numbers is called a step function if it can be written as a finite linear combination of indicator functions of intervals. Informally speaking, a step function is a piecewise constant function having only finitely many pieces. An example of step functions (the red graph).
The integral of a positive real function f between boundaries a and b can be interpreted as the area under the graph of f, between a and b.This notion of area fits some functions, mainly piecewise continuous functions, including elementary functions, for example polynomials.