Search results
Results from the WOW.Com Content Network
Length contraction is the phenomenon that a moving object's length is measured to be shorter than its proper length, which is the length as measured in the object's own rest frame. [1] It is also known as Lorentz contraction or Lorentz–FitzGerald contraction (after Hendrik Lorentz and George Francis FitzGerald ) and is usually only noticeable ...
The proper length of an object is the length of the object in the frame in which the object is at rest. Also, this contraction only affects the dimensions of the object which are parallel to the relative velocity between the object and observer. Thus, lengths perpendicular to the direction of motion are unaffected by length contraction.
Special relativity corrects the hitherto laws of mechanics to handle situations involving all motions and especially those at a speed close to that of light (known as relativistic velocities). Today, special relativity is proven to be the most accurate model of motion at any speed when gravitational and quantum effects are negligible.
If time dilation and length contraction of bodies moving in the aether have their exact relativistic values, the complete Lorentz transformation can be derived and the aether is hidden from any observation, which makes it kinematically indistinguishable from the predictions of special relativity. Using this model, the Michelson–Morley ...
For instance, Bell argued that the length contraction of objects as well as the lack of length contraction between objects in frame S can be explained using relativistic electromagnetism. The distorted electromagnetic intermolecular fields cause moving objects to contract, or to become stressed if hindered from doing so.
Time dilation and length contraction. Length of the atmosphere: The contraction formula is given by = /, where L 0 is the proper length of the atmosphere and L its contracted length. As the atmosphere is at rest in S, we have γ=1 and its proper Length L 0 is measured.
1902 – Lord Rayleigh writes that Lorentz’s hypothesis of length contraction predicts a form of birefringence and tries to observe it. [14] The null result questions Lorentz’s model, but it would be later explained by a combination of length contraction and time dilation. 1902 – Max Abraham develops his classical model of the electron.
The time it takes light to traverse back-and-forth along the Lorentz–contracted length of the longitudinal arm is given by: = + = / + / + = / = where T 1 is the travel time in direction of motion, T 2 in the opposite direction, v is the velocity component with respect to the luminiferous aether, c is the speed of light, and L L the length of the longitudinal interferometer arm.