Search results
Results from the WOW.Com Content Network
A subset A of positive integers has natural density α if the proportion of elements of A among all natural numbers from 1 to n converges to α as n tends to infinity.. More explicitly, if one defines for any natural number n the counting function a(n) as the number of elements of A less than or equal to n, then the natural density of A being α exactly means that [1]
In the context of proofs, this phrase is often seen in induction arguments when passing from the base case to the induction step, and similarly, in the definition of sequences whose first few terms are exhibited as examples of the formula giving every term of the sequence. necessary and sufficient
The results suggest that BioVectors can characterize biological sequences in terms of biochemical and biophysical interpretations of the underlying patterns. [21] A similar variant, dna2vec, has shown that there is correlation between Needleman–Wunsch similarity score and cosine similarity of dna2vec word vectors.
Roth's theorem on arithmetic progressions (infinite version): A subset of the natural numbers with positive upper density contains a 3-term arithmetic progression. An alternate, more qualitative, formulation of the theorem is concerned with the maximum size of a Salem–Spencer set which is a subset of [ N ] = { 1 , … , N } {\displaystyle [N ...
The roofline model is an intuitive visual performance model used to provide performance estimates of a given compute kernel or application running on multi-core, many-core, or accelerator processor architectures, by showing inherent hardware limitations, and potential benefit and priority of optimizations.
In arithmetic combinatorics, Szemerédi's theorem is a result concerning arithmetic progressions in subsets of the integers. In 1936, ErdÅ‘s and Turán conjectured [1] that every set of integers A with positive natural density contains a k-term arithmetic progression for every k. Endre Szemerédi proved the conjecture in 1975.
Number theory is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic functions.German mathematician Carl Friedrich Gauss (1777–1855) said, "Mathematics is the queen of the sciences—and number theory is the queen of mathematics."
Both proofs used methods from complex analysis, establishing as a main step of the proof that the Riemann zeta function ζ(s) is nonzero for all complex values of the variable s that have the form s = 1 + it with t > 0. [10] During the 20th century, the theorem of Hadamard and de la Vallée Poussin also became known as the Prime Number Theorem.