Search results
Results from the WOW.Com Content Network
An inrush current limiter is a device or devices combination used to limit inrush current. Passive resistive components such as resistors (with power dissipation drawback), or negative temperature coefficient (NTC) thermistors are simple options while the positive one (PTC) is used to limit max current afterward as the circuit has been operating (with cool-down time drawback on both).
It is known as a current-limiting diode (CLD) or current-regulating diode (CRD). Internal structure. It consists of an n-channel JFET with the gate shorted to the source, which functions like a two-terminal current limiter (analogous to a voltage-limiting Zener diode). It allows a current through it to rise to a certain value, but not higher.
A fault current limiter (FCL), also known as fault current controller (FCC), [1] is a device which limits the prospective fault current when a fault occurs (e.g. in a power transmission network) without complete disconnection. The term includes superconducting, solid-state and inductive devices. [2]
NTC thermistors can be used as inrush-current limiting devices in power supply circuits when added in series with the circuit being protected. They present a higher resistance initially, which prevents large currents from flowing at turn-on. As current continues to flow, NTC thermistors heat up, allowing higher current flow during normal operation.
Current limiting reactor. The main motive of using current limiting reactors is to reduce short-circuit currents so that circuit breakers with lower short circuit breaking capacity can be used. They can also be used to protect other system components from high current levels and to limit the inrush current when starting a large motor. [5]
Note that IEEE 315-1975 [2] defines separate class designation letters for separable assemblies (class designation 'A') and inseparable assemblies (class designation 'U'). Inseparable assemblies—i.e., "items which are ordinarily replaced as a single item of supply" [ 2 ] —are typically treated as components in this referencing scheme.
LM317 can also be used to design various other circuits like 0 V to 30 V regulator circuit, adjustable regulator circuit with improved ripple rejection, precision current limiter circuit, tracking pre-regulator circuit, 1.25 V to 20 V regulator circuit with minimum program current, adjustable multiple on-card regulators with single control ...
SMPSs often include safety features such as current limiting or a crowbar circuit to help protect the device and the user from harm. [1] In the event that an abnormal high-current power draw is detected, the switched-mode supply can assume this is a direct short and will shut itself down before damage is done.