Search results
Results from the WOW.Com Content Network
Enantioselective ketone reductions convert prochiral ketones into chiral, non-racemic alcohols and are used heavily for the synthesis of stereodefined alcohols. [1]Carbonyl reduction, the net addition of H 2 across a carbon-oxygen double bond, is an important way to prepare alcohols.
The chirality of the product of a Sharpless epoxidation is sometimes predicted with the following mnemonic. A rectangle is drawn around the double bond in the same plane as the carbons of the double bond (the xy-plane), with the allylic alcohol in the bottom right corner and the other substituents in their appropriate corners. In this ...
Because of the large size of the α-pinenyl substituents, diisopinocampheylborane only hydroborates unhindered alkenes. These reactions proceed with high enantioselectivity. 2-Butene, 2-pentene, 3-hexene are converted to the respective chiral alcohols in high ee's. [4] Norbornene under the same conditions gave an 83% ee.
Enantioselective synthesis, also called asymmetric synthesis, [1] is a form of chemical synthesis.It is defined by IUPAC as "a chemical reaction (or reaction sequence) in which one or more new elements of chirality are formed in a substrate molecule and which produces the stereoisomeric (enantiomeric or diastereomeric) products in unequal amounts."
Asymmetric reduction of 7-(Benzyloxy)hept-1-en-3-one leads to (S)-7-(Benzyloxy)hept-1-en-3-ol, a chiral alcohol that leads directly to synthesis of kanamienamides, that are currently researched as enamide containing enol ethers that show potent inhibition of cancer cells. The selective formation of the chiral product is achieved by (R)-CBS ...
The introduction of chirality into nonchiral reactants through usage of chiral catalysts is an important concept in organic synthesis. This reaction was developed principally by K. Barry Sharpless building on the already known racemic Upjohn dihydroxylation, for which he was awarded a share of the 2001 Nobel Prize in Chemistry.
The oxidation of alkenes has attracted much attention. Asymmetric epoxidation is often feasible. [4] One named reaction is the Jacobsen epoxidation, which uses manganese-salen complex as a chiral catalyst and NaOCl as the oxidant. The Sharpless epoxidation using chiral N-heterocyclic ligands and osmium tetroxide. Instead of asymmetric ...
The asymmetric Darzens reaction between aldehydes and (alpha)-haloesters is an effective method for the synthesis of glycidic esters. [25] Chiral auxiliaries, [26] chiral boron enolates, [27] and asymmetric phase transfer catalysis [28] have been used successfully to effect asymmetric induction in the Darzens reaction. (12)