Ads
related to: nowhere continuous function example questions free worksheets 5thteacherspayteachers.com has been visited by 100K+ users in the past month
Search results
Results from the WOW.Com Content Network
In mathematics, a nowhere continuous function, also called an everywhere discontinuous function, is a function that is not continuous at any point of its domain.If is a function from real numbers to real numbers, then is nowhere continuous if for each point there is some > such that for every >, we can find a point such that | | < and | () |.
The restriction of any continuous function to any subset of its domain (dense or otherwise) is always continuous, so the conclusion of the Blumberg theorem is only interesting for functions that are not continuous. Given a function that is not continuous, it is typically not surprising to discover that its restriction to some subset is once ...
It turns out that the Weierstrass function is far from being an isolated example: although it is "pathological", it is also "typical" of continuous functions: In a topological sense: the set of nowhere-differentiable real-valued functions on [0, 1] is comeager in the vector space C ([0, 1]; R ) of all continuous real-valued functions on [0, 1 ...
In mathematics, the Dirichlet function [1] [2] is the indicator function of the set of rational numbers, i.e. () = if x is a rational number and () = if x is not a rational number (i.e. is an irrational number).
An example of a Darboux function that is nowhere continuous is the Conway base 13 function. Darboux functions are a quite general class of functions. It turns out that any real-valued function ƒ on the real line can be written as the sum of two Darboux functions. [5]
A classic example of a pathology is the Weierstrass function, a function that is continuous everywhere but differentiable nowhere. [1] The sum of a differentiable function and the Weierstrass function is again continuous but nowhere differentiable; so there are at least as many such functions as differentiable functions.
Kronecker delta function: is a function of two variables, usually integers, which is 1 if they are equal, and 0 otherwise. Minkowski's question mark function: Derivatives vanish on the rationals. Weierstrass function: is an example of continuous function that is nowhere differentiable
A natural follow-up question one might ask is if there is a function which is continuous on the rational numbers and discontinuous on the irrational numbers. This turns out to be impossible. The set of discontinuities of any function must be an F σ set. If such a function existed, then the irrationals would be an F σ set.
Ads
related to: nowhere continuous function example questions free worksheets 5thteacherspayteachers.com has been visited by 100K+ users in the past month