Search results
Results from the WOW.Com Content Network
Manganese(VII) oxide (manganese heptoxide) is an inorganic compound with the formula Mn 2 O 7.Manganese heptoxide is a volatile liquid with an oily consistency. It is a highly reactive and powerful oxidizer that reacts explosively with nearly any organic compound.
It may refer more specifically to the following manganese minerals: Birnessite, (Na,Ca) 0.5 (Mn IV,Mn III) 2 O 4 · 1.5 H 2 O; Buserite, MnO 2 ·nH 2 O; Hausmannite, Mn II Mn III 2 O 4; Manganite, Mn III O(OH)
Together with manganese sulfate, MnO is a component of fertilizers and food additives. Many thousands of tons are consumed annually for this purpose. Other uses include: a catalyst in the manufacture of allyl alcohol, ceramics, paints, colored glass, bleaching tallow and textile printing.
Water-reactive substances [1] are those that spontaneously undergo a chemical reaction with water, often noted as generating flammable gas. [2] Some are highly reducing in nature. [ 3 ] Notable examples include alkali metals , lithium through caesium , and alkaline earth metals , magnesium through barium .
Mn 3 O 4 has been found to act as a catalyst for a range of reactions e.g. the oxidation of methane and carbon monoxide; [7] [8] the decomposition of NO, [9] the reduction of nitrobenzene [10] and the catalytic combustion of organic compounds. [11]
A related term is the heat of combustion, which is the chemical energy released due to a combustion reaction and of interest in the study of fuels. Food is similar to hydrocarbon and carbohydrate fuels, and when it is oxidized, its energy release is similar (though assessed differently than for a hydrocarbon fuel — see food energy).
Gas phase ion chemistry is a field of science encompassed within both chemistry and physics. It is the science that studies ions and molecules in the gas phase, most often enabled by some form of mass spectrometry. By far the most important applications for this science is in studying the thermodynamics and kinetics of reactions.
An example of a simple chain reaction is the thermal decomposition of acetaldehyde (CH 3 CHO) to methane (CH 4) and carbon monoxide (CO). The experimental reaction order is 3/2, [4] which can be explained by a Rice-Herzfeld mechanism. [5] This reaction mechanism for acetaldehyde has 4 steps with rate equations for each step :