Search results
Results from the WOW.Com Content Network
Potential energy with respect to gravity, close to Earth, per unit mass: gh, where g is the acceleration due to gravity (standardized as ≈9.8 m/s 2) and h is the height above the reference level (giving J/kg when g is in m/s 2 and h is in m).
In the paper and fabric industries, it is called grammage and is expressed in grams per square meter (g/m 2); for paper in particular, it may be expressed as pounds per ream of standard sizes ("basis ream"). A related area number density can be defined by replacing mass by number of particles or other countable quantity, with resulting units of ...
In the metric system, the mass per unit area of all types of paper and paperboard is expressed in terms of grams per square metre (g/m 2).This quantity is commonly called grammage in both English and French, [2] though printers in most English-speaking countries still refer to the "weight" of paper.
kilogram per cubic decimetre (kg/dm 3) gram per cubic centimetre (g/cm 3) 1 g/cm 3 = 1000 kg/m 3; megagram (metric ton) per cubic metre (Mg/m 3) In US customary units density can be stated in: Avoirdupois ounce per cubic inch (1 g/cm 3 ≈ 0.578036672 oz/cu in) Avoirdupois ounce per fluid ounce (1 g/cm 3 ≈ 1.04317556 oz/US fl oz = 1.04317556 ...
For example, in the reaction CH 4 + 2 O 2 → CO 2 + 2 H 2 O, the stoichiometric number of CH 4 is −1, the stoichiometric number of O 2 is −2, for CO 2 it would be +1 and for H 2 O it is +2. In more technically precise terms, the stoichiometric number in a chemical reaction system of the i-th component is defined as
For Da/ent to be exactly equal to g/mol, the dalton would need to be redefined exactly in terms of the (fixed-h) kilogram. Then, in addition to the identity g = (g/Da) Da, we would have the parallel relationship mol = (g/Da) ent = N 0 ent, conforming to the original mole concept—that the Avogadro number is the gram-to-dalton mass unit ratio.
Ampèremetre (Ammeter) A physical quantity (or simply quantity) [1] [a] is a property of a material or system that can be quantified by measurement.A physical quantity can be expressed as a value, which is the algebraic multiplication of a numerical value and a unit of measurement.
If a first body of mass m A is placed at a distance r (center of mass to center of mass) from a second body of mass m B, each body is subject to an attractive force F g = Gm A m B /r 2, where G = 6.67 × 10 −11 N⋅kg −2 ⋅m 2 is the "universal gravitational constant". This is sometimes referred to as gravitational mass.