Search results
Results from the WOW.Com Content Network
Ideally all reuse can be achieved by assembling existing components, but in practice inheritance is often needed to make new ones. Therefore inheritance and object composition typically work hand-in-hand, as discussed in the book Design Patterns (1994). [3]
[citation needed] In C++ private inheritance can be used as a form of implementation inheritance without substitutability. Whereas public inheritance represents an "is-a" relationship and delegation represents a "has-a" relationship, private (and protected) inheritance can be thought of as an "is implemented in terms of" relationship. [16]
In object-oriented programming, the factory method pattern is a design pattern that uses factory methods to deal with the problem of creating objects without having to specify their exact classes. Rather than by calling a constructor , this is accomplished by invoking a factory method to create an object.
The bridge pattern is a design pattern used in software engineering that is meant to "decouple an abstraction from its implementation so that the two can vary independently", introduced by the Gang of Four. [1] The bridge uses encapsulation, aggregation, and can use inheritance to separate responsibilities into different classes.
In software engineering, the delegation pattern is an object-oriented design pattern that allows object composition to achieve the same code reuse as inheritance. In delegation, an object handles a request by delegating to a second object (the delegate). The delegate is a helper object, but with the original context.
In software engineering, the Twin pattern is a software design pattern that allows developers to model multiple inheritance in programming languages that do not support multiple inheritance. This pattern avoids many of the problems with multiple inheritance.
Design Patterns: Elements of Reusable Object-Oriented Software (1994) is a software engineering book describing software design patterns. The book was written by Erich Gamma , Richard Helm , Ralph Johnson , and John Vlissides , with a foreword by Grady Booch .
The curiously recurring template pattern (CRTP) is an idiom, originally in C++, in which a class X derives from a class template instantiation using X itself as a template argument. [1] More generally it is known as F-bound polymorphism , and it is a form of F -bounded quantification .