enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hermitian matrix - Wikipedia

    en.wikipedia.org/wiki/Hermitian_matrix

    In signal processing, Hermitian matrices are utilized in tasks like Fourier analysis and signal representation. [2] The eigenvalues and eigenvectors of Hermitian matrices play a crucial role in analyzing signals and extracting meaningful information. Hermitian matrices are extensively studied in linear algebra and numerical analysis.

  3. Eigendecomposition of a matrix - Wikipedia

    en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

    In the QR algorithm for a Hermitian matrix (or any normal matrix), the orthonormal eigenvectors are obtained as a product of the Q matrices from the steps in the algorithm. [11] (For more general matrices, the QR algorithm yields the Schur decomposition first, from which the eigenvectors can be obtained by a backsubstitution procedure. [13])

  4. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    For a Hermitian matrix, the norm squared of the jth component of a normalized eigenvector can be calculated using only the matrix eigenvalues and the eigenvalues of the corresponding minor matrix, |, | = (()) (), where is the submatrix formed by removing the jth row and column from the original matrix.

  5. Eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Eigenvalue_algorithm

    Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...

  6. Eigenvalue perturbation - Wikipedia

    en.wikipedia.org/wiki/Eigenvalue_perturbation

    In the case where all the matrices are Hermitian positive definite and all the ... is the 2x2 identity matrix, any vector is an eigenvector; then = [,] / ...

  7. Divide-and-conquer eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Divide-and-conquer_eigen...

    As with most eigenvalue algorithms for Hermitian matrices, divide-and-conquer begins with a reduction to tridiagonal form. For an matrix, the standard method for this, via Householder reflections, takes floating point operations, or if eigenvectors are needed as well.

  8. Commuting matrices - Wikipedia

    en.wikipedia.org/wiki/Commuting_matrices

    Two Hermitian matrices commute if their eigenspaces coincide. In particular, two Hermitian matrices without multiple eigenvalues commute if they share the same set of eigenvectors. This follows by considering the eigenvalue decompositions of both matrices. Let and be two Hermitian matrices.

  9. Conjugate transpose - Wikipedia

    en.wikipedia.org/wiki/Conjugate_transpose

    In mathematics, the conjugate transpose, also known as the Hermitian transpose, of an complex matrix is an matrix obtained by transposing and applying complex conjugation to each entry (the complex conjugate of + being , for real numbers and ).