Search results
Results from the WOW.Com Content Network
Triangulation today is used for many purposes, including surveying, navigation, metrology, astrometry, binocular vision, model rocketry and, in the military, the gun direction, the trajectory and distribution of fire power of weapons. The use of triangles to estimate distances dates to antiquity.
GPS encodes this information into the navigation message and modulates it onto both the C/A and P(Y) ranging codes at 50 bit/s. The navigation message format described in this section is called LNAV data (for legacy navigation). The navigation message conveys information of three types: The GPS date and time, and the satellite's status.
Satellite navigation solution for the receiver's position (geopositioning) involves an algorithm.In essence, a GNSS receiver measures the transmitting time of GNSS signals emitted from four or more GNSS satellites (giving the pseudorange) and these measurements are used to obtain its position (i.e., spatial coordinates) and reception time.
Triangulation can also refer to the accurate surveying of systems of very large triangles, called triangulation networks. This followed from the work of Willebrord Snell in 1615–17, who showed how a point could be located from the angles subtended from three known points, but measured at the new unknown point rather than the previously fixed ...
The haversine formula determines the great-circle distance between two points on a sphere given their longitudes and latitudes. Important in navigation , it is a special case of a more general formula in spherical trigonometry , the law of haversines , that relates the sides and angles of spherical triangles.
If a navigator begins at P 1 = (φ 1,λ 1) and plans to travel the great circle to a point at point P 2 = (φ 2,λ 2) (see Fig. 1, φ is the latitude, positive northward, and λ is the longitude, positive eastward), the initial and final courses α 1 and α 2 are given by formulas for solving a spherical triangle
Vincenty's formulae are two related iterative methods used in geodesy to calculate the distance between two points on the surface of a spheroid, developed by Thaddeus Vincenty (1975a). They are based on the assumption that the figure of the Earth is an oblate spheroid, and hence are more accurate than methods that assume a spherical Earth, such ...
Ideally small changes in the measured data will not result in large changes in output location. The opposite of this ideal is the situation where the solution is very sensitive to measurement errors. The interpretation of this formula is shown in the figure to the right, showing two possible scenarios with acceptable and poor GDOP.