Search results
Results from the WOW.Com Content Network
In mathematics, exponentiation, denoted b n, is an operation involving two numbers: the base, b, and the exponent or power, n. [1] When n is a positive integer, exponentiation corresponds to repeated multiplication of the base: that is, b n is the product of multiplying n bases: [1] = ⏟.
In mathematics, Knuth's up-arrow notation is a method of notation for very large integers, introduced by Donald Knuth in 1976. [ 1 ] In his 1947 paper, [ 2 ] R. L. Goodstein introduced the specific sequence of operations that are now called hyperoperations .
Google Docs is an online word processor and part of the free, web-based Google Docs Editors suite offered by Google. Google Docs is accessible via a web browser as a web-based application and is also available as a mobile app on Android and iOS and as a desktop application on Google's ChromeOS .
Google Vids (AI video editor; currently in beta testing) It used to also include Google Fusion Tables until it was discontinued in 2019. [2] The Google Docs Editors suite is available freely for users with personal Google accounts: through a web application, a set of mobile apps for Android and iOS, and a desktop application for Google's ChromeOS.
where the second term is a proper rational fraction. The sum of two proper rational fractions is a proper rational fraction as well. The reverse process of expressing a proper rational fraction as the sum of two or more fractions is called resolving it into partial fractions. For example,
When exponents were introduced in the 16th and 17th centuries, they were given precedence over both addition and multiplication and placed as a superscript to the right of their base. [2] Thus 3 + 5 2 = 28 and 3 × 5 2 = 75. These conventions exist to avoid notational ambiguity while allowing notation to remain brief. [4]
The fractional part is called the fraction. To understand both terms, notice that in binary, 1 + mantissa ≈ significand, and the correspondence is exact when storing a power of two. This fact allows for a fast approximation of the base-2 logarithm, leading to algorithms e.g. for computing the fast square-root and fast inverse-square-root.
Many algorithms for exponentiation do not provide defence against side-channel attacks. Namely, an attacker observing the sequence of squarings and multiplications can (partially) recover the exponent involved in the computation. This is a problem if the exponent should remain secret, as with many public-key cryptosystems.