Search results
Results from the WOW.Com Content Network
A liquid hitting a wall in a container will cause sloshing. The free surface effect is a mechanism which can cause a watercraft to become unstable and capsize. [1]It refers to the tendency of liquids — and of unbound aggregates of small solid objects, like seeds, gravel, or crushed ore, whose behavior approximates that of liquids — to move in response to changes in the attitude of a craft ...
Calculation of surface energy from first principles (for example, density functional theory) is an alternative approach to measurement. Surface energy is estimated from the following variables: width of the d-band, the number of valence d-electrons, and the coordination number of atoms at the surface and in the bulk of the solid. [5] [page needed]
Disturbed free surface of a sea, viewed from below. In physics, a free surface is the surface of a fluid that is subject to zero parallel shear stress, [1] such as the interface between two homogeneous fluids. [2] An example of two such homogeneous fluids would be a body of water (liquid) and the air in the Earth's atmosphere (gas mixture).
Damage stability calculations are much more complicated than intact stability. Software utilizing numerical methods are typically employed because the areas and volumes can quickly become tedious and long to compute using other methods. The loss of stability from flooding may be due in part to the free surface effect.
The range of positive stability will be reduced to the angle of down flooding resulting in a reduced righting lever. When the vessel is inclined, the fluid in the flooded volume will move to the lower side, shifting its centre of gravity toward the list, further extending the heeling force. This is known as the free surface effect.
In physics, a free surface flow is the surface of a fluid flowing that is subjected to both zero perpendicular normal stress and parallel shear stress.This can be the boundary between two homogeneous fluids, like water in an open container and the air in the Earth's atmosphere that form a boundary at the open face of the container.
Important examples include propellant slosh in spacecraft tanks and rockets (especially upper stages), and the free surface effect (cargo slosh) in ships and trucks transporting liquids (for example oil and gasoline). However, it has become common to refer to liquid motion in a completely filled tank, i.e. without a free surface, as "fuel slosh".
If the free surface elevation η(x,t) was a known function, this would be enough to solve the flow problem. However, the surface elevation is an extra unknown, for which an additional boundary condition is needed. This is provided by Bernoulli's equation for an unsteady potential flow. The pressure above the free surface is assumed to be constant.