Search results
Results from the WOW.Com Content Network
The diagram shows a Hohmann transfer orbit to bring a spacecraft from a lower circular orbit into a higher one. It is an elliptic orbit that is tangential both to the lower circular orbit the spacecraft is to leave (cyan, labeled 1 on diagram) and the higher circular orbit that it is to reach (red, labeled 3 on diagram).
For more complicated maneuvers which may involve a combination of change in inclination and orbital radius, the delta-v is the vector difference between the velocity vectors of the initial orbit and the desired orbit at the transfer point. These types of combined maneuvers are commonplace, as it is more efficient to perform multiple orbital ...
Lunar transfer, perspective view. TLI occurs at the red dot near Earth. A trans-lunar injection (TLI) is a propulsive maneuver, which is used to send a spacecraft to the Moon. Typical lunar transfer trajectories approximate Hohmann transfers, although low-energy transfers have also been used in some cases, as with the Hiten probe. [1]
The orbital maneuver to perform the Hohmann transfer uses two engine impulses which move a spacecraft onto and off the transfer orbit. This maneuver was named after Walter Hohmann , the German scientist who published a description of it in his 1925 book Die Erreichbarkeit der Himmelskörper ( The Accessibility of Celestial Bodies ). [ 7 ]
In orbital mechanics, a transfer orbit is an intermediate elliptical orbit that is used to move a spacecraft in an orbital maneuver from one circular, or largely circular, orbit to another. There are several types of transfer orbits, which vary in their energy efficiency and speed of transfer.
Hohmann transfer orbit, 2, from an orbit (1) to a higher orbit (3) A Hohmann transfer orbit is the simplest maneuver which can be used to move a spacecraft from one altitude to another. Two burns are required: the first to send the craft into the elliptical transfer orbit, and a second to circularize the target orbit.
Hohmann transfer orbit; I. International Berthing and Docking Mechanism; L. Low thrust relative orbital transfer; O. Orbital inclination change;
Remember that this change in velocity, ∆V, is only the amount required to change the spacecraft from its original orbit to the phasing orbit.A second change in velocity equal to the magnitude but opposite in direction of the first must be done after the spacecraft travels one phase orbit period to return the spacecraft from the phasing orbit to the original orbit.