Search results
Results from the WOW.Com Content Network
The notation [,) is used to indicate an interval from a to c that is inclusive of —but exclusive of . That is, [ 5 , 12 ) {\displaystyle [5,12)} would be the set of all real numbers between 5 and 12, including 5 but not 12.
The main objective of interval arithmetic is to provide a simple way of calculating upper and lower bounds of a function's range in one or more variables. These endpoints are not necessarily the true supremum or infimum of a range since the precise calculation of those values can be difficult or impossible; the bounds only need to contain the function's range as a subset.
Intervals are ubiquitous in mathematical analysis. For example, they occur implicitly in the epsilon-delta definition of continuity; the intermediate value theorem asserts that the image of an interval by a continuous function is an interval; integrals of real functions are defined over an interval; etc.
4 members of a sequence of nested intervals. In mathematics, a sequence of nested intervals can be intuitively understood as an ordered collection of intervals on the real number line with natural numbers =,,, … as an index. In order for a sequence of intervals to be considered nested intervals, two conditions have to be met:
This notation has also been used for other variants of floor and ceiling functions. 4. Iverson bracket: if P is a predicate, [] may denote the Iverson bracket, that is the function that takes the value 1 for the values of the free variables in P for which P is true, and takes the value 0 otherwise.
The Dirac comb of period 2 π, although not strictly a function, is a limiting form of many directional distributions. It is essentially a wrapped Dirac delta function. It represents a discrete probability distribution concentrated at 2 π n — a degenerate distribution — but the notation treats it as if it were a continuous distribution.
Macaulay's notation is commonly used in the static analysis of bending moments of a beam. This is useful because shear forces applied on a member render the shear and moment diagram discontinuous. Macaulay's notation also provides an easy way of integrating these discontinuous curves to give bending moments, angular deflection, and so on.
The notation is also used to denote the characteristic function in convex analysis, which is defined as if using the reciprocal of the standard definition of the indicator function. A related concept in statistics is that of a dummy variable .