enow.com Web Search

  1. Ads

    related to: matrix polynomial formula worksheet printable

Search results

  1. Results from the WOW.Com Content Network
  2. Matrix polynomial - Wikipedia

    en.wikipedia.org/wiki/Matrix_polynomial

    A matrix polynomial identity is a matrix polynomial equation which holds for all matrices A in a specified matrix ring M n (R). Matrix polynomials are often demonstrated in undergraduate linear algebra classes due to their relevance in showcasing properties of linear transformations represented as matrices, most notably the Cayley–Hamilton ...

  3. Polynomial matrix - Wikipedia

    en.wikipedia.org/wiki/Polynomial_matrix

    A polynomial matrix over a field with determinant equal to a non-zero element of that field is called unimodular, and has an inverse that is also a polynomial matrix. Note that the only scalar unimodular polynomials are polynomials of degree 0 – nonzero constants, because an inverse of an arbitrary polynomial of higher degree is a rational function.

  4. Sylvester's formula - Wikipedia

    en.wikipedia.org/wiki/Sylvester's_formula

    In matrix theory, Sylvester's formula or Sylvester's matrix theorem (named after J. J. Sylvester) or Lagrange−Sylvester interpolation expresses an analytic function f(A) of a matrix A as a polynomial in A, in terms of the eigenvalues and eigenvectors of A. [1] [2] It states that [3]

  5. Linear recurrence with constant coefficients - Wikipedia

    en.wikipedia.org/wiki/Linear_recurrence_with...

    In mathematics (including combinatorics, linear algebra, and dynamical systems), a linear recurrence with constant coefficients [1]: ch. 17 [2]: ch. 10 (also known as a linear recurrence relation or linear difference equation) sets equal to 0 a polynomial that is linear in the various iterates of a variable—that is, in the values of the elements of a sequence.

  6. Matrix (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Matrix_(mathematics)

    Therefore the polynomial equation p A (λ) = 0 has at most n different solutions, that is, eigenvalues of the matrix. [42] They may be complex even if the entries of A are real. According to the Cayley–Hamilton theorem, p A (A) = 0, that is, the result of substituting the matrix itself into its characteristic polynomial yields the zero matrix.

  7. Complex conjugate root theorem - Wikipedia

    en.wikipedia.org/wiki/Complex_conjugate_root_theorem

    The polynomial x 2 + 1 = 0 has roots ± i. Any real square matrix of odd degree has at least one real eigenvalue. For example, if the matrix is orthogonal, then 1 or −1 is an eigenvalue. The polynomial + has roots , +,, and thus can be factored as

  8. Multilinear polynomial - Wikipedia

    en.wikipedia.org/wiki/Multilinear_polynomial

    The resulting polynomial is not a linear function of the coordinates (its degree can be higher than 1), but it is a linear function of the fitted data values. The determinant, permanent and other immanants of a matrix are homogeneous multilinear polynomials in the elements of the matrix (and also multilinear forms in the rows or columns).

  9. Circulant matrix - Wikipedia

    en.wikipedia.org/wiki/Circulant_matrix

    Any circulant is a matrix polynomial (namely, the associated polynomial) in the cyclic permutation matrix: = + + + + = (), where is given by the companion matrix = []. The set of n × n {\displaystyle n\times n} circulant matrices forms an n {\displaystyle n} - dimensional vector space with respect to addition and scalar multiplication.

  1. Ads

    related to: matrix polynomial formula worksheet printable