enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Additive inverse - Wikipedia

    en.wikipedia.org/wiki/Additive_inverse

    In a vector space, the additive inverse −v (often called the opposite vector of v) has the same magnitude as v and but the opposite direction. [11] In modular arithmetic, the modular additive inverse of x is the number a such that a + x ≡ 0 (mod n) and always exists. For example, the inverse of 3 modulo 11 is 8, as 3 + 8 ≡ 0 (mod 11). [12]

  3. Mathematical analysis - Wikipedia

    en.wikipedia.org/wiki/Mathematical_analysis

    Complex analysis is particularly concerned with the analytic functions of complex variables (or, more generally, meromorphic functions). Because the separate real and imaginary parts of any analytic function must satisfy Laplace's equation, complex analysis is widely applicable to two-dimensional problems in physics.

  4. Doubly periodic function - Wikipedia

    en.wikipedia.org/wiki/Doubly_periodic_function

    If a doubly periodic function is also a complex function that satisfies the Cauchy–Riemann equations and provides an analytic function away from some set of isolated poles – in other words, a meromorphic function – then a lot of information about such a function can be obtained by applying some basic theorems from complex analysis. A non ...

  5. Zero-product property - Wikipedia

    en.wikipedia.org/wiki/Zero-product_property

    If is a prime number, then the ring of integers modulo has the zero-product property (in fact, it is a field). The Gaussian integers are an integral domain because they are a subring of the complex numbers. In the strictly skew field of quaternions, the zero-product property holds. This ring is not an integral domain, because the multiplication ...

  6. Zeros and poles - Wikipedia

    en.wikipedia.org/wiki/Zeros_and_poles

    More precisely, let f be a function from a complex curve M to the complex numbers. This function is holomorphic (resp. meromorphic) in a neighbourhood of a point z of M if there is a chart ϕ {\displaystyle \phi } such that f ∘ ϕ − 1 {\displaystyle f\circ \phi ^{-1}} is holomorphic (resp. meromorphic) in a neighbourhood of ϕ ( z ...

  7. Antiderivative - Wikipedia

    en.wikipedia.org/wiki/Antiderivative

    The slope field of () = +, showing three of the infinitely many solutions that can be produced by varying the arbitrary constant c.. In calculus, an antiderivative, inverse derivative, primitive function, primitive integral or indefinite integral [Note 1] of a continuous function f is a differentiable function F whose derivative is equal to the original function f.

  8. Absolutely and completely monotonic functions and sequences

    en.wikipedia.org/wiki/Absolutely_and_completely...

    A function that is absolutely monotonic on [,) can be extended to a function that is not only analytic on the real line but is even the restriction of an entire function to the real line. The big Bernshtein theorem : A function f ( x ) {\displaystyle f(x)} that is absolutely monotonic on ( − ∞ , 0 ] {\displaystyle (-\infty ,0]} can be ...

  9. Wirtinger derivatives - Wikipedia

    en.wikipedia.org/wiki/Wirtinger_derivatives

    In complex analysis of one and several complex variables, Wirtinger derivatives (sometimes also called Wirtinger operators [1]), named after Wilhelm Wirtinger who introduced them in 1927 in the course of his studies on the theory of functions of several complex variables, are partial differential operators of the first order which behave in a very similar manner to the ordinary derivatives ...