Search results
Results from the WOW.Com Content Network
The rank of a symmetry group is closely related to the complexity of the object (a molecule, a crystal structure) being under the action of the group. If G is a crystallographic point group, then rank(G) is up to 3. [9] If G is a wallpaper group, then rank(G) = 2 to 4. The only wallpaper-group type of rank 4 is p2mm. [10]
Other surprising examples include torsion-free rank 2 groups A n,m and B n,m such that A n is isomorphic to B n if and only if n is divisible by m. For abelian groups of infinite rank, there is an example of a group K and a subgroup G such that K is indecomposable; K is generated by G and a single other element; and
A free group of rank k clearly has subgroups of every rank less than k. Less obviously, a (nonabelian!) free group of rank at least 2 has subgroups of all countable ranks. The commutator subgroup of a free group of rank k > 1 has infinite rank; for example for F(a,b), it is freely generated by the commutators [a m, b n] for non-zero m and n ...
Note that a "complex Lie group" is defined as a complex analytic manifold that is also a group whose multiplication and inversion are each given by a holomorphic map. The dimensions in the table below are dimensions over C. Note that every complex Lie group/algebra can also be viewed as a real Lie group/algebra of twice the dimension.
The automorphism groups of two infinite-rank free abelian groups have the same first-order theories as each other, if and only if their ranks are equivalent cardinals from the point of view of second-order logic. This result depends on the structure of involutions of free abelian groups, the automorphisms that are their own inverse. Given a ...
If L/K is a finite extension of number fields with degree greater than 1 and the units groups for the integers of L and K have the same rank then K is totally real and L is a totally complex quadratic extension. The converse holds too. (An example is K equal to the rationals and L equal to an imaginary quadratic field; both have unit rank 0.)
For example, the dihedral group D 8 of order sixteen can be generated by a rotation, r, of order 8; and a flip, f, of order 2; and certainly any element of D 8 is a product of r ' s and f ' s. However, we have, for example, rfr = f −1, r 7 = r −1, etc., so such products are not unique in D 8. Each such product equivalence can be expressed ...
A class of groups with similar properties (with respect to lattices) to real semisimple Lie groups are semisimple algebraic groups over local fields of characteristic 0, for example the p-adic fields. There is an arithmetic construction similar to the real case, and the dichotomy between higher rank and rank one also holds in this case, in a ...