enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of finite simple groups - Wikipedia

    en.wikipedia.org/wiki/List_of_finite_simple_groups

    F 4 (q) has a non-trivial graph automorphism when q is a power of 2. These groups are the automorphism groups of 8-dimensional Cayley algebras over finite fields, which gives them 7-dimensional representations. They also act on the corresponding Lie algebras of dimension 14. G 2 (q) has a non-trivial graph automorphism when q is a power of 3

  3. List of small groups - Wikipedia

    en.wikipedia.org/wiki/List_of_small_groups

    List of all nonabelian groups up to order 31 Order Id. [a] G o i Group Non-trivial proper subgroups [1] Cycle graph Properties 6 7 G 6 1: D 6 = S 3 = Z 3 ⋊ Z 2: Z 3, Z 2 (3) : Dihedral group, Dih 3, the smallest non-abelian group, symmetric group, smallest Frobenius group.

  4. Rank of a group - Wikipedia

    en.wikipedia.org/wiki/Rank_of_a_group

    If G is a finitely generated group, then the rank of G is a non-negative integer. The notion of rank of a group is a group-theoretic analog of the notion of dimension of a vector space. Indeed, for p-groups, the rank of the group P is the dimension of the vector space P/Φ(P), where Φ(P) is the Frattini subgroup.

  5. Simple Lie group - Wikipedia

    en.wikipedia.org/wiki/Simple_Lie_group

    Once these are known, the ones with non-trivial center are easy to list as follows. Any simple Lie group with trivial center has a universal cover whose center is the fundamental group of the simple Lie group. The corresponding simple Lie groups with non-trivial center can be obtained as quotients of this universal cover by a subgroup of the ...

  6. Classification of finite simple groups - Wikipedia

    en.wikipedia.org/wiki/Classification_of_finite...

    In mathematics, the classification of finite simple groups (popularly called the enormous theorem [1] [2]) is a result of group theory stating that every finite simple group is either cyclic, or alternating, or belongs to a broad infinite class called the groups of Lie type, or else it is one of twenty-six exceptions, called sporadic (the Tits group is sometimes regarded as a sporadic group ...

  7. Table of Lie groups - Wikipedia

    en.wikipedia.org/wiki/Table_of_Lie_groups

    Note that a "complex Lie group" is defined as a complex analytic manifold that is also a group whose multiplication and inversion are each given by a holomorphic map. The dimensions in the table below are dimensions over C. Note that every complex Lie group/algebra can also be viewed as a real Lie group/algebra of twice the dimension.

  8. Simple group - Wikipedia

    en.wikipedia.org/wiki/Simple_group

    Similarly, the additive group of the integers (, +) is not simple; the set of even integers is a non-trivial proper normal subgroup. [1] One may use the same kind of reasoning for any abelian group, to deduce that the only simple abelian groups are the cyclic groups of prime order. The classification of nonabelian simple groups is far less trivial.

  9. Torsion-free abelian group - Wikipedia

    en.wikipedia.org/wiki/Torsion-free_abelian_group

    A non-finitely generated countable example is given by the additive group of the polynomial ring [] (the free abelian group of countable rank). More complicated examples are the additive group of the rational field Q {\displaystyle \mathbb {Q} } , or its subgroups such as Z [ p − 1 ] {\displaystyle \mathbb {Z} [p^{-1}]} (rational numbers ...