Search results
Results from the WOW.Com Content Network
is a function from domain X to codomain Y. The yellow oval inside Y is the image of . Sometimes "range" refers to the image and sometimes to the codomain. In mathematics, the range of a function may refer to either of two closely related concepts: the codomain of the function, or; the image of the function.
This is called the space of functions vanishing in a neighborhood of infinity. C 0 ( X ) , {\displaystyle C_{0}(X),} the subset of C ( X ) {\displaystyle C(X)} consisting of functions such that for every r > 0 , {\displaystyle r>0,} there is a compact set K ⊆ X {\displaystyle K\subseteq X} such that | f ( x ) | < r {\displaystyle |f(x)|<r ...
A function f from X to Y. The set of points in the red oval X is the domain of f. Graph of the real-valued square root function, f(x) = √ x, whose domain consists of all nonnegative real numbers. In mathematics, the domain of a function is the set of inputs accepted by the function.
It is the set Y in the notation f: X → Y. The term range is sometimes ambiguously used to refer to either the codomain or the image of a function. A codomain is part of a function f if f is defined as a triple (X, Y, G) where X is called the domain of f, Y its codomain, and G its graph. [1]
In mathematics, the support of a real-valued function is the subset of the function domain of elements that are not mapped to zero. If the domain of f {\displaystyle f} is a topological space , then the support of f {\displaystyle f} is instead defined as the smallest closed set containing all points not mapped to zero.
Interpretation for surjective functions in the Cartesian plane, defined by the mapping f : X → Y, where y = f(x), X = domain of function, Y = range of function. Every element in the range is mapped onto from an element in the domain, by the rule f. There may be a number of domain elements which map to the same range element.
Let F be a field and let X be any set. The functions X → F can be given the structure of a vector space over F where the operations are defined pointwise, that is, for any f, g : X → F, any x in X, and any c in F, define (+) = + () = When the domain X has additional structure, one might consider instead the subset (or subspace) of all such functions which respect that structure.
In complex analysis, a complex domain (or simply domain) is any connected open subset of the complex plane C. For example, the entire complex plane is a domain, as is the open unit disk, the open upper half-plane, and so forth. Often, a complex domain serves as the domain of definition for a holomorphic function.